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Belew, McInerney & Schraudolf: Evolving Networks iAbstractIt is appealing to consider hybrids of neural-network learning algo-rithms with evolutionary search procedures, simply because Nature hasso successfully done so. In fact, computational models of learning andevolution o�er theoretical biology new tools for addressing questionsabout Nature that have dogged that �eld since Darwin [Belew, 1990].The concern of this paper, however, is strictly arti�cial: Can hybridsof connectionist learning algorithms and genetic algorithms producemore e�cient and e�ective algorithms than either technique applied inisolation? The paper begins with a survey of recent work (by us andothers) that combines Holland's Genetic Algorithm (GA) with con-nectionist techniques and delineates some of the basic design problemsthese hybrids share. This analysis suggests the dangers of overly lit-eral representations of the network on the genome (e.g., encoding eachweight explicitly). A preliminary set of experiments that use the GAto �nd unusual but successful values for BP parameters (learning rate,momentum) are also reported. The focus of the report is a series ofexperiments that use the GA to explore the space of initial weight val-ues, from which two di�erent gradient techniques (conjugate gradientand back propagation) are then allowed to optimize. We �nd that useof the GA provides much greater con�dence in the face of the stochas-tic variation that can plague gradient techniques, and can also allowtraining times to be reduced by as much as two orders of magnitude.Computational trade-o�s between BP and the GA are considered, in-cluding discussion of a software facility that exploits the parallelisminherent in GA/BP hybrids. This evidence leads us to conclude thatthe GA's global sampling characteristics compliment connectionist localsearch techniques well, leading to e�cient and reliable hybrids.
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Belew, McInerney & Schraudolf: Evolving Networks 11 IntroductionIt is extremely appealing to consider hybrids of neural-network-based learn-ing algorithms with evolutionary search procedures, simply because Naturehas so successfully done so. In fact, new computational models of learn-ing and evolution o�er theoretical biology new tools for addressing ques-tions about Nature that have dogged that �eld since Darwin [Belew, 1990,Kau�man and Smith, 1986]. However, these same models have proven in-teresting enough to computer scientists that they can also be treated asarti�cial algorithms, divorced from the natural phenomena from which themodels originally sprung. Considered separately, both connectionist net-works and \evolutionary algorithms" have recently drawn a great deal ofattention as new forms of adaptive algorithhm. On occasion, the two tech-niques have been compared (e.g., [Brady, 1985]). The concern of the currentpaper is the composition of these two types of algorithms: Can hybrids ofconnectionist learning algorithms and genetic algorithms produce more ef-�cient and e�ective algorithms than either technique applied in isolation?This proves to be a very broad question, and the present paper attempts toprovide only a survey of results to date. Based on these experiences, we alsoidentify several key areas for further investigation.Section 2 begins with a brief description of Holland's Genetic Algorithm(GA). While using the GA to guide connectionist learning systems throughspeci�cation of the networks' structural characteristics is perhaps the mostnatural, there are other hybrids of the two techniques that also seem promis-ing. For example, Section 4 describes experiments that use the GA to �ndgood values for two critical parameters of the BP learning algorithm, learn-ing rate (�) and momentum (�).Section 5 considers potential hybrids of GA and connectionist algorithmsfrom the perspective of the state spaces they search and their respectivemethods. In brief, the GA proceeds by globally sampling over the space ofalternative solutions, while gradient techniques | including BP but alsomethods like conjugate gradient | proceed by locally searching the imme-diate neighborhood of a current solution. This suggests that using the GAto provide good \seeds" from which BP then continues to search will bee�ective. We describe several experiments in which the GA is used to selectinitial values for the vector of weights used by BP and also by conjugategradient.
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Belew, McInerney & Schraudolf: Evolving Networks 2Section 6 brie
y sketches some of the computational complexity issuesarising from GA/BP hybrids. A software facility that exploits the naturalparallelism when the GA is used to control multiple instantiations of BPsimulation is discussed, and some features of the time and space complexityof the hybrid systems are considered.2 Genetic algoritmsThe GA has been investigated by John Holland [Holland, 1975] and studentsof his for almost twenty years now, with a marked increase in interest withinthe last few years [Grefenstette, 1985,Grefenstette, 1987,Scha�er, 1989]. Theinterested reader is advised to begin a more thorough introduction to thesealgorithms with the excellent new text by Goldberg [Goldberg, 1989].Attempts to simulate evolutionary search date back as far as the �rstattempts to simulate neural networks [Fogel et al., 1966]. The basic con-struction is to consider a population of individuals that each represent apotential solution to a problem. The relative success of each individual onthis problem is considered its �tness, and used to selectively reproduce themost �t individuals to produce similar but not identical o�spring for thenext generation. By iterating this process, the population e�ciently sam-ples the space of potential individuals and eventually converges on the most�t.More speci�cally, consider a population of N individuals xi, each repre-sented by a chromosonal string of L allele values. An initial populationis constructed at random; call this generation g0. Each individual is eval-uated by some arbitrary environment function that returns the �tnesses�(xi) 2 < of each individual in g0. The evolutionary algorithm then per-forms two operations. First, its selection algorithm uses the population'sN �tness measures to determine how many o�spring each member of g0contributes to g1. Second, some set of genetic operators are applied tothese o�spring to make them di�erent from their parents. The resultingpopulation is now g1, these individuals are again evaluated, and the cyclerepeats itself. The iteration is terminated by some measure suggesting thatthe population has converged.A critical distinction among simulated evolutionary algorithms is withrespect to their genetic operators. Often the only genetic operator used is
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Belew, McInerney & Schraudolf: Evolving Networks 3mutation: some number of alleles in the parent are arbitrarily changedin the child. This amounts to a random search around the most success-ful individuals of the previous generation, and is therefore not very pow-erful. The use of a simple mutation operator, coupled with the exponen-tial ampli�cation of good solutions a�orded by selective reproduction, pro-duce a powerful adaptive system on their own and some �nd this su�cient[Fogel et al., 1966,Rizki and Conrad, 1986].The central feature of Holland's GA is its use of an additional cross-over operator modeled on the biological operation of genetic recombination:during sexual reproduction segments from each of the parents' chromosomesare combined to form the o�spring's. One standard version1 of the cross-overoperation picks two points 1 � m;n � L at random and builds the o�spring'sbit string by taking all bits between m and n from one parent and theremaining bits from the other parent. For example, if L = 10; m = 2; n = 6:Parent(1): 1111111111 Offspring(1): 1100001111Parent(2): 0000000000 Offspring(2): 0011110000The appeal of the GA is due both to empirical studies that show thecross-over operator works extremely well on real, hard problems, and alsoto the \schemata" analysis Holland has provided to show why this is the case.Brie
y, Holland's Schemata Theorem [Holland, 1975, Thm. 6.2.3] suggeststhat the initially random sampling of early generations is concentrated by theGA's search towards those areas of the search space demonstrating better-than-average performance.At the same time, the crossover operator imposes severe constraints onthe genomic representation, as the experiments with the representation ofconnectionist networks here will demonstrate. Conversely, modern geneticscontinues to uncover biological mechanisms that are potentially even morepowerful operators than crossover [Huynen and Hogweg, 1989]. This paper,however, will restrict itself to the GA on the grounds that it currently pro-vides the best balance between empirically demonstrated adaptive powerand theoretical understanding.One key property of the GA is that it works on a population of (binary)1Because it has proven such an important component of the GA, many other variationsof cross-over are under active investigation. For example, one, two or more cross-overpoints can be selected; these points can be selected non-uniformly over the string, etc.



www.manaraa.com

Belew, McInerney & Schraudolf: Evolving Networks 4bit strings with absolutely no knowledge of the semantics associated withthese bits. Its only contact with the environment is the global �tness mea-sure associated with the entire string. This is considered an advantage ofthe algorithm because it ensures that the GA's success is not related to thesemantics of any particular problem. This is not to say that the GA workson all problems equally well, only that these di�erences can be attributedto the underlying search spaces rather than the semantics of the problemdomain [Bethke, 1981].Having committed ourselves then to the GA and its crossover opera-tor, it is worth noting some of the central \pearls of GA wisdom" thatare most salient to the problem of encoding networks onto GA strings.First, our encoding must respect the schemata: The representation mustallow discovery of small \building blocks" from which larger, complete so-lutions can be formed. Ideally, this means that we should be able to provethat the Schema Theorem holds with respect to our representation of anetwork. Second, the well known phenomena of linkage bias insists thatwe do our best to re
ect functional interactions with proximity on thestring. For example, a great deal of connectionist work has highlightedthe role of individual hidden units; localizing the representation of thesehidden units on the GA string therefore seems one reasonable strategy.[Merrill and Port, 1988,Montana and Davis, 1989]. Finally, we must worryabout the closure properties of the GA operators on the network descrip-tions. It is not strictly necessary that these operators produce valid networkdescriptions. But unless invalid descriptions are the exception and not therule, the GA will not get the information about regularities among validsolutions in each new generation it needs to function properly.3 Mapping networks onto GA stringsWithin these basic guidelines, the ways of representing a weighted graphwith a string of bits are limited only by the imagination. One useful di-mension along which these alternatives can be organized is what Todd hascalled \developmental speci�cation": i.e., how complete and literal a rep-resentation of the network is encoded on the GA string [Todd, 1988]. Atone extreme, it is possible to encode each of the network's weights, in fullprecision, and then use the GA to solve this as a standard multi-parameterfunction optimization problem; in this case, there is no role for connectionist
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Belew, McInerney & Schraudolf: Evolving Networks 5learning. At the other extreme, we could emulate biology and use the ge-netic description as input to a complex developmental intepretation processthat then constructs the network/phenotype. Between these two extremesare a wide range of mappings in which the GA is used to constrain butnot completely determine a network's structure, with connectionist learningprocesses subsequently embellishing this partial solution.Surely the most straightforward representation of a connectionist net-work in a GA string is formed simply by concatenating all of the network'sweights.2 This approach leads to two types of design decision. First, howare each of the real number weights to be represented? Second, in whatorder are the weights to be concatenated?3.1 Encoding real numbersAn immediate design issue facing any connectionist/GA hybrid is how theconnectionist weights are to be represented on the GA string. Appropriaterepresentation for real values on the basically discrete, binary GA chromo-some is a matter of considerable debate within the GA community. Per-haps for this reason, several of the earlier attempts to use the GA withconnectionist networks have left real numbers as discrete elements in theirrepresentation, thus avoiding this encoding issue [Montana and Davis, 1989,Whitley and Hanson, 1989]. The GA is then allowed to search for good com-binations of weights, but is not used for �nding the value of any one weight.But this a priori division of e�ort is something we hope to avoid; the manysuccesses with which the GA has been used to discover real-valued quantitiessuggests that it is also unnecessary [DeJong, 1980].Figure 1hows the basic features of weight encoding. For each weight, as-sume �rst that the real number to be found exists somewhere in the boundedregion [m;M ]. Assume also thatB bits have been allocated to represent eachweight; these are su�cient to divide the bounded region into 2B intervals.The B bit index is then Gray-coded to minimize the Hamming distancebetween indices close in value [Caruana and Scha�er, 1988]. Within thespeci�ed interval, then, a real number is selected from a random variableuniformly distributed over that interval. Note that this stochastic element2Some tentative results suggest that with this encoding the GA can �nd weights morequickly than back propagation, but only on fairly deep networks (i.e., with many hiddenlayers) [O�utt, 1989].
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Belew, McInerney & Schraudolf: Evolving Networks 7will often introduce great variability in the resulting networks' performance,as connectionist networks have been shown to be extremely sensitive tosmall changes in weights [Kolen and Pollack, 1990]. More constructively, itwould be desirable if this encoding (the range encoded, the number of bitsused) were varied as a consequence of the variability experienced across thepopulation. This kind of dynamic parameter encoding for the GA is beingexplored separately [Schraudolph and Belew, 1990].3.2 Crossover with distributed representationsPerhaps the most important feature of representation for the GA is prox-imity. Because two alleles are much more likely to become separated by acrossover operation if they are far apart on the string than if they are closetogether, it becomes less and less likely that the GA will be able to discoverand exploit nonlinear interactions between any two alleles as they are putfarther apart on the string. In our case, this lesson suggests that the bestrepresentation will have dependent weights close together on the string justif these weights are functionally dependent on one another.Consider a standard three-layer, feed-forward network. At least in thesenetworks, the obvious functional units correspond to units in the hiddenlayer. This suggests that all weights associated with one hidden unit shouldbe placed together on the string. Merrill has performed experiments thatsubstantiate this [Merrill and Port, 1988]. Such functional units can bemade even more cohesive by introducing \punctuated" crossover operations,which have higher probability of breaking the chromosome at certain punc-tuated points in the string (e.g., between one hidden unit's weight and an-other's) [Scha�er and Morishima, 1985].One important property of the solutions learned by networks, however,is that they are generally far from unique. In the context of the GA, thismeans that crossover among two relatively good parents who have discovereddi�erent solutions can lead to abysmal o�spring. Consider again the exampleof a simple three-layer, feed-forward back propagation (BP) network, andconsider the solutions it might discover to the \encoder" problem.3 A typicalsolution, reported in the PDP volumes [Rumelhart et al., 1986, p. 337], is3The encoder problem involves mapping N orthogonal patterns through a hidden layerof log2N hidden units onto a set of N orthogonal output patterns [Rumelhart et al., 1986,p. 335].
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Figure 2: Solution to the encoding problemshown in Figure 2. Note that while this network discovered the same binaryencoding scheme a computer scientist might suggest, it also made use ofintermediate activation values. In general, we can expect such individualvariation among the solutions found by connectionist networks, and so intheir corresponding genetic descriptions.Less subtle but just as problematic variations arise because fully isomor-phic solutions can be obtained simply by permuting the hidden units. Thatis, two networks can be identical up to the arbitrarily assigned indices oftheir hidden units. But (at least in the representations considered hereto-fore) the location of a hidden unit weight on the GA chromosome dependsentirely on its (arbitrarily assigned) index!The invariance of BP networks under permutation of the hidden units issuch a devastating and basic obstacle to the natural mapping of networksonto a GA string that we might consider ways of normalizing network so-lutions prior to crossover. It seems, for example, that at least in the caseof BP networks with a single hidden layer, the di�erential weighting of thehidden units to the \anchored" (i.e., constant and nonarbitrary) input andoutput layers might be used to recognize similarly functioning hidden units.
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Belew, McInerney & Schraudolf: Evolving Networks 9Even establishing a correspondence among hidden units of two three-layernetworks that have been trained to solve the same problem appears to becomputationally intractable, even when we assume that the only di�erencebetween the two networks' solutions is a permutation of hidden units. Inrealistic networks many other di�erent solutions to the same problem can beconstructed, for example by reversing the sign of all weights, or taking other\semi-linear combinations"4 of the weights. We therefore conclude that at-tempting to normalize networks before combining them is not feasible.Thus, the speci�cs of a network's architecture are underdetermined bythe problem it is trying to solve. Consequently the genetic representationsof these varying architectures cannot be expected to share the similarities(schemata) that the GA needs in order to be e�ective. If very small popula-tions are used with the GA, there is not \room" for multiple alternatives todevelop. In this case, whichever solution is discovered �rst comes to dom-inate the population and resist alternatives. This approach has been usedsuccessfully byWhitney [Whitley and Hanson, 1989]. Alternatively, the cor-respondence between genotype and phenotype can be made less direct; the�rst step in this direction is discussed in the next section.3.3 Wiring diagramsAs we move away from full speci�cation of all network weights on the geneticstring, the goal will be to use the GA to specify some constraints on anetwork architecture. Within these constraints, the connectionist learningprocedure then does its best to optimize the objective function via weightmodi�cation.One of the most straightforward architectural descriptions for a networkis a binary \wiring diagram." The links of a three-layer feedforward networkwith I input units, H hidden units and O output units are encoded asa binary string of length H � (I + 1 + O) + O, with all links (includingthe bias) from and to one hidden unit falling contiguously. This wiringspeci�cation is given to a simulator that uses BP to do its best to learnthe speci�ed task from a series of training examples, and the network's�nal mean squared error (MSE) becomes the �tness associated with thatindividual. An entire population of such individuals form a generation. The4We speak a bit loosely here. Because BP networks depend on nonlinear \squashing"functions, simple linear combinations are not quite adequate.
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10Figure 3: Four-quadrant problemGA is used to replicate and alter the binary network descriptions to form anew population, and the cycle is then repeated.Miller et al. report on experiments using this sort of wiring diagram[Miller et al., 1989]. Their most striking result was with the Four-quadrantproblem, a generalization of the XOR problem to a two-dimensional realinterval; see Figure 3. This problem is interesting because it admits atleast two types of solution, as shown in Figure 4. The \fat" solution usesonly a single layer of hidden units, with the number of hidden units requiredgrowing as the desired precision increases. The \skinny" solution makes useof two layers of exactly two hidden units each. Each input unit is connectedto only one of the hidden units in the �rst layer; this layer simply changesthe real inputs to binary values. The rest of the network can then solve theproblem as a standard XOR network. Since tradeo�s between wide and deepnetworks are an important and open issue in connectionist learning systems,this problem is particularly valuable because it provides some experiencewith using the GA to design networks with more than one hidden layer.Using a network architecture description that allowed either of these so-lutions to form, the GA in fact consistently found intermediate solutions
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Figure 4: Two solutions to the Four-quadrant problemlike that shown in Figure 5. Note that while this network makes use ofboth hidden layers, it does not solve the Four Quadrant problem in eitherof the regular fashions described above. Miller et al. also report that theGA consistently created a link directly from the input unit to the outputunit, a feature that was allowed by their network architecture descriptionbut not anticipated by them. It is important to note, however, that some ofthese solutions existed in the random initial population with which the GAbegan, and the GA converged on a population of such individuals in onlya few generations. The GA did not therefore play an important role in thediscovery of these solutions, and any iterated restart of BP can be expectedto have performed similarly.Several comments should be made about binary wiring diagrams likethese. First, experiments such as these impose an unfortunate asymmetrybetween the adaptation e�ected by the GA and that done by connectionistlearning. Virtually all connectionist learning algorithms allow connectionsto come to have zero weight, making them act as if the connections were notthere. Thus an existing connection can learn to have zero weight, but an
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Figure 5: GA solution to Four-quadrant problemabsent connection cannot ever become non-zero. We should expect this biasto be exploited by any hybrid adaptive system that combines evolutionaryand (connectionist) learning sub-systems.Second, the binary speci�cation of link presence or absence can easily begeneralized to a wider range of constraints on network architectures. Forexample, Todd suggests that a ternary speci�cation might specify that a linkwas absent, restricted to positive weights or restricted to negative weights[Todd, 1988]. The range of search allowed the connectionist learning proce-dure by the genetic network description can be progressively constrained inthis fashion until, in the extreme, the GA is specifying each weight exactly.Conversely, the process of dynamic parameter encoding (DPE) can be usedto focus the GA's search on those regions with least variability, so that apriori divisions of the search between GA and gradient procedures come tobe reconsidered [Schraudolph and Belew, 1990].Third, as soon as the goal of our hybrid algorithm is changed from �ndingthe weights for a net that can do the best job, to �nding an architectureand also weights for that architecture that can do the best job, our searchcriterion must change correspondingly. More speci�cally, if the GA is to
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Belew, McInerney & Schraudolf: Evolving Networks 13�nd good architectures, the function it optimizes must include not onlya measure of error (e.g., MSE), but also a measure of the complexity ofthe network. Otherwise, if there is no (�tness) penalty paid for havingmore links, for example, there will be no adaptive pressure to use moreparsimonious representations. The absense of any such complexity term inthe Four Quadrant experiments of Miller et al. may account for the factthat the GA found neither the \fat" nor \skinny" solution, but somethingwith (potentially redundant) direct links from input to output; see Section6. Finally, wiring diagrams do not avoid the \underdetermined architec-ture" problems described in the last section. The problem, at least in part,is that the relationship between genotype and phenotype is still inappro-priate: features of the network that are inconsequential to its computation(e.g., the indexing of the hidden units) are re
ected by radically di�erentgenetic descriptions. And so we are pushed another step away from com-plete network speci�cation and towards the interposition of a developmentalprocess between genotype and phenotype.3.4 Developmental programsThe GA is generally cast as a function optimizer, with the GA manipulatingvalues of x in order to optimize some function f(x). One critical aspect ofbiological evolution that is missed in this formulation is that the space ofgenotypes manipulated by genetics is only indirectly related to the space ofphenotypes which are evaluated by the environment. The process relatinggenotype to phenotype is, of course, ontogenetic development.The developmental process is an extraordinarily complicated adaptivesystem in its own right [Purves, 1988], and attempting to incorporate itwithin the already complicated hybrids being considered here is problematic.5But the incorporation of a developmental interpreter means that the GA canbe allowed to search through representations for which it is more well-suitedthan those derived directly from networks. Just which developmental modelwill prove most satisfactory in the context of evolution/development/learninghybrids is still an open and important question, but there are a few promis-ing leads.5For example, the developmental interpreter should, by rights, itself be speci�ed onthe genome.
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Start-of-AreaArea IDTotal SizeDimension 1 ShareDimension 2 ShareDimension 3 ShareStart-of-ProjectionTarget AddressAddress ModeDimension 1 RadiusDimension 2 RadiusDimension 3 RadiusConnection DensityInitial EtaEta SlopeEnd-of-AreaFigure 6: Harp blueprintHarp et al. describe a very interesting model in which the GA searchesfor a network \blueprint" [Harp et al., 1989]; see Figure 6. The descriptionof neural networks in terms of \areas" (i.e., sets of units with varying spatialextent), and \projections" (i.e., sets of edges randomly connecting units fromone area to another) certainly seems to capture much of the architecturalregularity of nervous systems in vertebrates.These experiments are consistent with only the most basic features ofthe corresponding biological systems, and we intend to explore more sat-isfactory models. Purves outlines the basic features of a more elaboratecell adhesion model of neural development [Purves, 1988]; Edelman alsodesribes an elaborate but idiosyncratic model [Edelman, 1987]. The de-tails of retina-to-optic tectum mappings have been described by Cowan[Cowan and Friedman, 1990]. Stork has used a developmental model withthe GA to show how evolutionary \pre-adaptations" may be responsible for
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Belew, McInerney & Schraudolf: Evolving Networks 15certain anomolous neural connections in the modern cray�sh [Stork et al., 1990].The range of connectionist network representations for the GA surveyedin this section still leaves much to be explored. Further, the GA can beused with connectionist networks in other ways than speci�cation of net-work architecture. The next two sections describe experiments that use theGA to control other, non-architectural parameters of connectionist learningsystems.4 Tuning BP parametersThe central experiments of Section 5 use the GA to �nd good initial weightsfrom which a gradient descent procedure like back propagation (BP) canreliably converge on a solution. While these investigations are largely or-thogonal to the use of the GA for the kind of network architectural def-inition described in the last section, the well known symmetry problem6was used because, like Miller et al's Four Quadrant problem (cf. Sec-tion 3.3), it is known to permit two distinctly di�erent network solutions[Minsky and Papert, 1988, p. 252-253]. For the experiments reported herewe used the six-bit version of this problem. A three-layer feedforward net-work with six input units, six hidden units, and one output unit was speci-�ed.Before beginning these experiments, it was necessary to set the learningrate (�) and momentum (�) parameters of BP. These parameters are knownto be strongly coupled, dependent on characteristics of the problem beingsolved, and critical to the successful convergence of the learning procedure.As a result, �nding good values for � and � is more art than science andgenerally a matter for trial-and-error search. Because the GA has often hadsuccess at strongly non-linear function optimization problems like this, webegan by using the GA to �nd good values for � and �. The ranges0 � � � 8; 0 � � � 1:0were explored, and each parameter was allocated 10 bits. This unusuallylarge range for � was used because preliminary experimentation with more6Given a binary vector of length 2N , the net is to produce a value of unity on its singleoutput unit i�, for all input units Ii = I2N�i+1; i = 1; :::;N .
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Figure 7: Finding � and � with the GAconservative values (e.g., � � 2; � � 4) consistently resulted in the GAconverging on the maximum value in that range.With the GA selecting values for these two parameters for each individualin a population of size 50, an otherwise standard BP simulation was trainedfor 200 epochs and its mean squared error (MSE) at the end of this traingwas used as the individual's �tness.Figure 7 shows the results after 200 generations, with the diameterof each circle indicating the reciprocal of the MSE (i.e., larger circles meanbetter performance) for each individual in the last generation. Conventionalwisdom calls for � = 0:1; � = 0:2, but the GA consistently converged onvalues of � � 2:5! This means that BP is moving rapidly along the errorsurface. We conjecture that these values depend on the number of learningepochs (T ) we allowed each BP optimization before using the net's MSEvalue. We used T = 200 epochs, which is an extremely short training
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Belew, McInerney & Schraudolf: Evolving Networks 17period for the six-bit symmetry problem7. Networks using more \patient"values for � and � were unable to solve the problem in the time alloted, andonly those that \went for broke" were successful. It seems likely that moreconservative values for � and � would be found if more trials were allowed,and even more radical values might be found if this number were reduced.8Note also that both large and small diameter circles are sometimes vir-tually concentric. This means that while the GA consistently converged onfairly narrow ranges for � and �, there is still high variability in the �tnessesof individuals with very similar parameters. This is because the BP sim-ulations have a highly stochastic element, viz., the random initial weightsassigned. The values for � = 2:5; � = 0:33 were robust enough under varyinginitial weights that they could be exploited by the GA, but the selection ofgood initial weights is still critical. The identi�cation of these good initialvalues is the major focus of our next experiments.5 Sampling and searchThe use of the GA to tune BP parameters has proven practically useful,but there is nothing terribly profound about this type of hybrid. The GA isdoing function optimization over a set of parameters in the same way thatGAs have been used since DeJong [DeJong, 1980]. A more important com-bination of these technologies arises from the observation that local searchperformed by back propagation and other gradient descent procedures is wellcomplemented by the global sampling performed by the GA; consider Figure8. Gradient descent procedures all sample some characteristics of their localneighborhood to determine a direction in which the search is to proceed.Sophisticated techniques for gradient descent (of which BP is only one) ef-�ciently combine characteristics of the local neighborhood to form a goodnext guess. But, depending on characteristics of the objective function be-ing searched, this local information may be misleading as to the location of7Randomly restarted BP runs using � = 0:1; � = 0:2 reliably converge to the solutionin approximately 4000 epochs.8It should be noted that the use of these high, quick parameters for BP seem todepend critically, at least in the six-bit symmetry problem, on the order in which traininginstances are presented. Our simulator allows exemplars to be presented in: sequentialorder, random order with replacement, random order without replacement, or \batch"training. Because we have had most success on the six-bit symmetry problem usingrandom with replacement ordering, these experiments were run with this option.
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Figure 8: Sampling and search
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Belew, McInerney & Schraudolf: Evolving Networks 19the actual optimum. In particular, gradient descent procedures are knownto be subject to local minima. Sampling techniques like the GA, on theother hand, are e�ective because they ensure broad coverage over the entiredomain. The GA works by collecting information from the early and virtu-ally uniform sampling of early generations, and then using this informationto guide subsequent sampling towards particularly promising regions. Theselection of a new element of the domain to evaluate therefore exploits globalinformation from across the domain. Unfortunately, information in the im-mediate neighborhood of each of these samples plays no role in subsequentGA sampling, meaning the algorithm can come frustratingly close to thesolution without actually �nding it.Combining the GA's global sampling with BP's local searching there-fore seems an extremely natural and promising form of hybrid. It can becompared to the simple process of hill climbing with restart, with the keyadvantage of the GA being that it promises to sample in a much better thanrandom fashion [Ackley, 1987,Goldberg, 1989].When placed in the context of connectionist networks, the strategy justexpressed suggests that the GA be used to create \seeds": starting pointsfrom which a connectionist search proceeds. In connectionist learning terms,this corresponds to using the GA to prescribe the initial weights,W(0) , ona network's links. A schematic view of this hybrid construction is shown inFigure 9. The GA selects an initial weight vector for each individual in apopulation, each is allowed to learn with BP for some number of trials, andthe error rate at which it is performing at this time is considered to be the�tness of that individual.Thus the GA will sample those regions of weight space from which it isreliably possible to reach good function values via gradient descent. Thereis a pleasing symmetry to this search, in that the best initial weight vector(found by the GA) is obviously the same as the �nal weight vector (foundby BP); the two algorithms' solutions are interchangable in this respect. Itis important to note, however, that the two algorithms are coupled in thissymmetric search only if the range of initial weight values being explored bythe GA is coextensive with the domain of solution weight vectors ultimatelydiscovered by the gradient descent procedure.In practice, these two sets are often quite di�erent. For example, the PDPvolumes recommend \... small random weights" [Rumelhart et al., 1986, p.
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iu = MSE(w *)Figure 9: Selecting W(0)330]; Miyata has operationalized this as \... uniformly distributed ran-dom numbers between �12" [Miyata, 1987]. Final weights, on the otherhand, can be widely distributed, and often fall outside this initial distrution[Hanson and Burr, 1990].The distinction between starting and �nal points in weight space alsocomplicates our characterization of just what the GA is looking for. Whileit is true the GA is seekingW(0) that are \close to" the solutions ultimatelyfound by a gradient technique, it is important to note that the relevant mea-sure is not the natural (e.g., Euclidean) distance between initial and �nalweight vectors. Rather, goodW(0) found by the GA are close to good �nalsolutions with respect to the gradient procedure being used. Figure 10 cari-catures the search regions induced by two di�erent gradient techniques, allbegun from the same initial point in weight space. For a particular gradienttechnique, these regions can be characterized in terms of \isobars" requiringthe same computational e�ort (e.g, BP training epochs). We can imagineerror surfaces over which it takes a gradient procedure many iterations tomove a short Euclidean distance, and the converse is also true. Further,the range of solutions \reachable" by a gradient procedure varies with theprocedure being used; points that are easy to reach via BP may not bereachable via conjugate gradient techniques, and vice versa.Finally, sampling procedures like the GA require that the gradient pro-
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Belew, McInerney & Schraudolf: Evolving Networks 22Expt. W(0) range GA Encoding Gradient proc. Epochs1 �105 Uniform Conj. grad. N/A2 �12 Uniform Back prop. 2003 �[10�2; 5] Exponential Back prop. 40Table 1: W(0) ExperimentsTotal Trials = 3000Population Size = 50Structure Length = 128Crossover Rate = 0.600Mutation Rate = 0.001Generation Gap = 1.000Scaling Window = 5Max Gens w/o Eval = 2Options = acelTable 2: GA parameterscedure reliably converge on a good solution. Recent results by Kolen andPollack demonstrate that \BP is sensitive to initial conditions" (i.e., what wecall W(0) ) [Kolen and Pollack, 1990] , and so �nding such reliable regionsis non-trivial (cf. Section 5.4). Thus the goal of our search is somewhat dif-ferent from most connectionist systems: we are interested in the distributionof good solutions rather than simply identifying some of these.Three sets of experiments were performed to test the feasibility of usingthe GA as a source of W(0) seeds for gradient techniques that then didtheir best to optimize further; these are summaraized in Table 1. In the�rst set a conjugate gradient (CG) method was used, and the range ofW(0)explored by the GA was made very large, e�ectively coextensive with thatof the CG procedure. In the second set of simulations, BP was used and theGA was allowed to explore within the more typical range �12 . Finally, anexpanded range was searched by the GA, but an exponential encoding wasused that allowed particularly re�ned searching of smallW(0) values. Basicparameters of the GA were also kept constant across the three experiments;see Table 2. Our group has developed a sophisticated GA simulator,Genesis-UCSD, and it was used for all of the experiments reported here;Section 6.1 describes a recent extension of this simulator that allows it torun across a distributed network of processors.
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Belew, McInerney & Schraudolf: Evolving Networks 235.1 Experiment 1: Conjugate gradient over closed domainsTo ensure the closure properties between GA and gradient search proceduresmentioned above, the range of initial weights were allowed to run between�105. Eight bits were allocated to represent each weight. Thus the GAwas able to specify an initial weight with extremely poor precision: Eachallele value corresponds to a range of approximately 800 (see Section 3 fordetails). Conjugate gradient (CG) optimization was used in these experi-ments because it is known to converge to solutions more quickly and reliablythan heuristic second-order optimization techniques like BP (with a momen-tum term) [Barnard and Cole, 1989]9. The GA was used to create an initialpopulation of W(0) vectors, CG optimized each of these, the MSE of eachresult was used for the individuals' �tnesses, the GA used these to producea new population of W(0) vectors, and the cycle repeated itself.Figure 11 summarizes the basic results of these experiments. The averagemean squared error (MSE) of the GA+CG hybrid is plotted on a logarith-mic scale, as a function of generation; this curve is labelled GA+CG(avg).To put the results of this hybrid method in perspective, it is appropriate tocompare them to use of GA and CG methods used in isolation. For com-parison with the CG-alone method, multiple randomly restarted iterationsof CG were performed an equivalent number of times and this average base-line is labeled CG (avg). The comparison of averages is appropriate givenour interest in expected performance, but the simple average does blur infor-mation about the underlying distribution. Also, in most applications, theminimum of multiple restarts would be used. To facilitate this comparision,multiple randomly restarted iterations of CG were performed an equivalentnumber of times and the minimum of these is drawn as a baseline labeledCG (min)Alternatively, the hybrid can be compared to search by the GA alonewherein initial W(0) vectors selected by the GA were evaluated withoutmodi�cation by CG. In both cases, the hybrid approach did signi�cantlybetter than either the gradient technique or the GA used in isolation. Thus,on average, the hybrid of GA+CG can solve the problem more e�ectivelythan either a randomly started CG search or GA sampling uninformed by9The code implementing the CG method was obtained from the OPT package ofBarnard and Cole. This code required extensive modi�cation to allow it to be used forthese problems, and to �x a serious bug it contained.



www.manaraa.com

Belew, McInerney & Schraudolf: Evolving Networks 24

Generations

lo
g1

0(
M

S
E

)

0 10 20 30 40 50 60

0.
0

0.
15

0.
30

0.
45

0.
60

0.
75

0.
90

1.
05

1.
20

0 10 20 30 40 50 60

0.
0

0.
15

0.
30

0.
45

0.
60

0.
75

0.
90

1.
05

1.
20

CG(avg)

CG(min)

GA(avg)

GA+CG(avg)

LAM(avg)Figure 11: GA+CG hybrid



www.manaraa.com

Belew, McInerney & Schraudolf: Evolving Networks 25some gradient search.At the end of 60 generations the GA+CG hybrid had converged signi�cantly10.The solutions it found were odd, in that large magnitude weights were used,often greater than �104. This seems to be due to two factors. First, theGA will sample large W(0) weights more often than small ones, simply be-cause there are so many more of them. Uniformly dividing a large weightrange into a �nite set of regions results in the low end of the dynamic rangebeing grossly under-represented. (This suggests non-uniform, exponentialencodings; see Section 5.3.) Second, the inclusion of even one large weightin the inner product summation performed by connectionist units is enoughto push that unit's activity into the asymptotic range of its squashing func-tion, e�ectively drowning out the contribution of any smaller weights. Moreprecisely, the derivative of the sigmoidal squashing function is near zero forlarge weights, meaning that almost no error information is available for BP.The result of these two factors is that the solutions found by these exper-iments were poor in absolute terms.11 (BP can �nd perfect solutions tosix-bit symmetry, at least if given enough trials; see Section 6.)Our picture of the range of good W(0) values now looks like a \donut,"with both lower and upper bounds; see Figure 12 If W(0) is too near theorigin, the network is unable to break the symmetries of its hidden unitsso that they all attempt to do the same job, and the network will remainon the \local maximum" of the origin originally described by Rumelhartet al.[Rumelhart et al., 1986, p. 330]. But if W(0) is too large, the net isdrawn to solutions with large weights that grow without bound. Worse, anyone large weight can push a unit into the asymptotic region of its sigmoidalsquashing function, e�ectively masking any error signal. For these reasons,the remaining two experiments of this report restrict the GA's search forgood W(0) values to a limited range.12Before discussing these other experiments, however, another interesting10137 out of 384 alleles converged to at least 90%; Bias = 0.888.11Another possible explanation is that the CG method was used inappropriately. Con-jugate gradient techniques work well for moving quickly to the bottom of an attractorbasin, but they may not be the best way to �nd such basins in the �rst place. This sug-gests that (yet another!) hybrid method would use BP for a few iterations, to get into agood attractor basin, and then invoke CG to �nish mimimization. We are exploring thistechnique.12In a forthcoming report, we investigate a theoretic characterization of the donut ofappropriate W(0) values.
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Belew, McInerney & Schraudolf: Evolving Networks 27comparison is possible when the GA and gradient methods share coextensivesearch spaces. The GA+CG hybrid can be compared to a third techniquethat might be called a \Lamarckian" algorithm: the solution found by CGis remapped into the genetic encoding and this new speci�cation is returnedto the GA population in place of the original W(0) . That is, insteadof giving the GA only the information that some individuals are close (inthe gradient search sense) to a good solution, we do our best to \reversetranscribe" the solution actually found back into its genomic correlate, andgive this to the GA to act as a new, genetically engineered parent. Atthe end of the runs shown in Figure 11 this Lamarkian variant appears todo only as well as the standard GA+CG hybrid, but in longer runs theLamarkian algorithm does signi�cantly better. Note that again the abilityto invert from learned solutions back into their genetic correlates dependson these two domains being coextensive. In fact, even in these experimentsin which the range ofW(0) was extended far beyond normal, the CG oftenmoved to values outside the range of �105; in this case, the genetic valuewas given its maximum or minimum value. This is only one, simple exampleof the di�culty in inverting the results of learning back into their geneticcorrelates; see Section 7.5.2 Experiment 2: BP and limited W(0) rangeWith the exception of the folk-wisdom (mentioned in Section 5) that initialweights should be small (�12) and random, little is known about the selectionof good initial weights. Empirically, it has been widely observed that theperformance of BP is highly variable with respect to the choice of W(0) .Figure 13 is typical. This shows 10 standard13 runs of BP varying only intheir initial values for W(0) . All we can say is that sometimes BP worksand sometimes it doesn't; this is far from satisfying.The question to be investigated here is whether the GA can �nd regionsof the W(0) space that reliably lead to good (in the sense of low MSE)networks. The basic construction of the GA+BP hybrid algorithm is thesame as the GA+CG hybrid above: The GA was used to create an initialpopulation of W(0) vectors, BP was then used to optimize each of these,the MSE of each result was used for the individual's �tness, the GA used13Miyata's SunNet simulator [Miyata, 1987] was used on the problem of six-bit symme-try with six hidden units; � = 0:1; � = 0:2.
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Figure 13: Multiple BP runs
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Figure 14: GA+BP Initial Populationthese to produce a new population of W(0) vectors, and the cycle repeatsitself. However, for the reasons discussed in the previous section, the rangeof W(0) explored by the GA was limited to the standard �12 . Note alsothat an unusally high learning rate (� = 2:5) similar to those discovered inSection 4 was used in these BP simulations.14 This rapid learning rate madeit possible to give each BP network only 200 training epochs before judgingits MSE �tness.Figure 14 shows the learning curves for individuals in the initial GApopulation. Except that the curves are much noiser (due to the high � valueused), the same high variability of Figure 13 is exhibited. And this is tobe expected since the GA's initial population is also picked in a uniformlyrandom fashion. Figure 15 shows that after 200 generations the GA wasable to �nd a region of W(0) space from which BP can reliably convergeon solutions.As with conjugate gradient, the performance of the BP+GA hybrid canalso be compared to the performance of BP and GA used independently;14These experiments were done before the simulations of Section 4 were complete, andhence the values (� = 2:5; � = 0:0) are less than optimal.
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Figure 15: GA+BP Final Populationthis comparision is shown in Figure 16. Here the generation average meansquared error (MSE) of the BP+GA hybrid is plotted on a logarithmic scale,as a function of generation and labelled GA+BP(avg). The generationaverage of population in which GA was used to select W(0) and the MSEof these individuals is taken immediately (i.e., without any BP learning) islabeled GA(avg). For comparison with BP, two baselines corresponding tothe average and minimum of an equal number of multiple random restartsof a BP simulation are shown as BP(avg) and BP(min), resp.There are several things worth noting in this comparison. First, the GAused by itself fares almost as well as the BP average. This is particularlystriking given that the GA is only being allowed to sample in the originalW(0) space, �12 . Second, use of the BP+GA hybrid creates a populationof 50 individuals who, while very di�erent from one another, have MSEperformance almost identical with the best found by 5000 random restartsof BP alone. Finally, after only a few generations, the BP+GA hybrid is ableto �nd strictly better individuals than could be found by 5000 independentBP runs, and ultimately �nds a much better one. As with the conjugategradient experiments of Section 5.1, the hybrid of GA+BP can reliably solvethe problem more e�ectively than either a randomly started BP search or
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Belew, McInerney & Schraudolf: Evolving Networks 32GA sampling without guidance by local information.5.3 Experiment 3: BP over a closed domainThe results of the previous two sets of experiments appear to create a para-dox: The GA should be allowed to sample over the same \closed" space ofweights through which the gradient technique is to search, but if the genomeis allowed to encode the entire range of weights, small W(0) weights canbe only sparsely represented, and the probability of the GA's sampling thefertile region in which all the weights are near zero is very small indeed.This paradox can be resolved, however, if the requirement that the W(0)range be uniformly represented on the genome is relaxed. Real numbers aremapped onto the GA chromosome as before, but the �nal TRANSFORM stage(cf. Figure ??) is changed from a linear transformation to an exponentialone, so as to emphasize sampling of small weights.Speci�cation of an appropriate exponential sampling transform turns outto be a subtle issue that we are continuing to investigate. For these exper-iment our initial strategy was simply to select upper and lower bounds forW(0) , and the number of bits per weight. Based in part on Hanson andBurr's analysis of two large and well-studied networks [Hanson and Burr, 1990],we allowed W(0) to range between approximately:0:01 �jW(0) j� 12and allowed 10 bits/weight.Using this encoding, the experiments of the last section combining GAand BP were repeated. The �rst observation was that this encoding waspropitious in that it allowed extremely short BP training times. Figure 17shows the results of combining the GA sampling process with only 40 epochsof BP training; as above, these results are compared to multiple, random BPruns and the use of GA without any BP search. With this short training,the best solution found by the hybrid GA+BP system was still better thanthat found by an equal number of randomly restarted BP solutions, but thedi�erence in MSE's was less dramatic.1515Still, the hybrid's solution solved the six-bit symmetry problem to criterion while theBP network did not.
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Belew, McInerney & Schraudolf: Evolving Networks 34With longer training times (e.g., the 200 epochs used for the previoussection's experiments), the problem became too easy for the GA: initial,random generations already contained many good solutions. We conjecturethat constructing initial W(0) vectors with many small weights but a fewlarge ones | in e�ect much like the �nal weight distribution reported byHanson and Burr | is enough to break hidden unit symmetries and still al-low most error information past the sigmoid's derivative. When the trainingtime is then reduced (down to 40 epochs!) to compensate for the facilatorye�ect of the exponential encoding, the GA is again able to �nd good regionsof W(0) .5.4 Sampling with the GAThe picture we have, then, is of a highly \textured" error surface, with thestarting point of a gradient technique's search dramatically in
uencing itsability to get to satisfactory minima. Some basic bounds on a good W(0)region can limit search to a \donut" around the origin; see Figure 12 andaccompanying discussion. But even within this donut there is signi�cantvariability.The experiments of Kolen and Pollack provide an interesting compar-ison with our own [Kolen and Pollack, 1990]. Among other experiments,they performed a Monte Carlo search through (what we call) W(0) -spacefor the problem of 2-bit XOR with two hidden units. First, they echo our\donut" observation: \... the magnitude of the initial condition vector (inweight space) is a very signi�cant parameter in convergence time variabil-ity." Second, they go further than characterizing the error surface as simplytextured, to propse that they are \fractal-like." But the central di�erencebetween this work and our own is our use of the GA, e�ectively in place oftheir uniformly distributed Monte Carlo iteration. The moral Kolen and Pol-lack draw from their experiments is that since BP simulations are extremelysensitive to their initial W(0) values, \... the initial conditions for the net-work need to be precisely speci�ed or �led in a public scienti�c database.[Emphasis in the originial]." We believe our conclusion is more optimistic,and certainly less bureacratic: Use of the GA's non-random search allowsus to judiciously sample W(0) so as to identify regions from which we canreliably converge on good solutions, while simultaneously allowing us to cuttraining times by as much as two orders of magnitude.
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Belew, McInerney & Schraudolf: Evolving Networks 35The major �nding from these experiments is that the use of the GA toselect advantageous initial weights for the BP algorithm is e�ective. Section3.4 outlined our current intuition that further progress with hybrid GA andgradient search procedures will require more sophisticated developmentalprograms, with the GA specifying broad constraints on patterns of neuralconnectivity rather than values for any one connection. But it is not thatfar-fetched to imagine that, at least in some primitive organisms' nervoussystems, the genome does specify a coarse pattern of synaptic connectionsthat is then �ne-tuned during the organism's lifetime.6 Computational complexity in GA/BP hybridsOn �rst blush, the idea of taking a compute-intensive procedure like BPand duplicating it O(100) times to form a population, and then using theGA to produce O(100) such generations seems pro
igate. And if we are wellsatis�ed with the results of a single BP run, this analysis may be correct. Butwe have three good reasons to question this analysis. First, BP performanceis known to be highly variable under stochastic variation. Consequently,many investigators already use some sort of \outer loop" of multiple, randomrestarts to improve their con�dence in the solutions found. Section 5 arguedthat the GA's sampling is far superior to such random restarts. Second,there is currently great interest in more elaborate network topologies thanthe standard single, fully connected hidden layer. However, extending BPand other learning techniques to these new topologies has proven di�cult.The recent experiments reported in Section 3.3, particularly those of Toddet al. and Harp et al., are indications, albeit preliminary ones, that the GAcan be a useful tool for exploring these novel architectures.Finally, most of the experiments reported here have changed the BPalgorithm so that its training time is greatly reduced. As algorithm design-ers, our primary concern must be with the total time taken by the hybridsystem. The time complexity of this system is simply the product of thenumber of generations the GA is run, times the size of the population ofeach generation times the training time taken by each individual:TotalT ime = Generations � PopulationSize � TrainingTimeThus there is a direct tradeo� between the number of generations and thenumber of trials allocated each individual. Using the GA to produce 100
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Belew, McInerney & Schraudolf: Evolving Networks 36generations of 50 individuals multiplies the apparatent time complexity by5000. But Section 5.2 and Section 5.3 report on experiments in which thetraining time was reduced (from 4000 epochs on 6-6-1 symmetry) by factorsof 20 and 100, resp. to the same error criterion. Thus the use of fasterlearning rates and judicious sampling of W(0) , the 5000- fold increasein time can be cut to a factor of 50. When the greater assurance in theanswers found through the GA's robust, global searching is considered, andcompared to the O(10) random restarts often done with BP simulations, ourhybrid methods are very competitive.Much of our current research focuses on a more theoretic basis for the hy-bridization of GA and gradient techniques. The time complexity issues justmentioned introduce an important new parameter for hybrid connection-ist/GA systems like these, viz., how long each connectionist minimizationprocedure should be allowed to iterate before the value it has found is usedto determine that network's �tness. So, are we better o� using many GAgenerations of short-lived individuals, or allowing each individual to searchfor longer, so as to produce a perhaps more informative value for the GA?16One view of the space-complexity issues in hybridization is suggestedby Figure 18. Section 3.3 mentioned a few of the alternative encodingsof connectionist networks onto the GA's string that are available. Thesealternatives can be ordered in terms of the number of free parameters be-ing searched by the GA and gradient procedures. At one extreme we canuse only the GA, fully representing in full precision each of the network'sweights and leaving BP nothing to do; at the other extreme, BP could beused exclusively. Intermediate between these are hybrids that encode someconstraints on the structure of the BP network into the GA's chromosome: abit specifying a link's presence, several bits specifying allowed weight ranges,etc. When a developmental component is interposed between the GA andBP, complexity issues become even more complicated.It will take time to understand these tradeo�s completely. As mentionedin Section 3.3, some measure of a network's complexity must augment thebasic performance measure (e.g., MSE), or the GA cannot impose adaptivepressure towards more parsimonious solutions. Rumelhart (personal com-munication) has attempted to use BP itself to explore new architectures,by including additional terms in the criterion function for number of hidden16In other words, whether 'tis nobler to \live fast and die young" or \live long andprosper"?
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Belew, McInerney & Schraudolf: Evolving Networks 38units, number of links, and even number of \distinct" weights used. Ris-sanen's \minimum description length" formalism provides a rigorous mea-sure of a model's complexity [Rissanen, 1989], and Tenorio and Lee havemade an initial attempt to apply this to connectionist network architectures[Tenorio and Lee, 1989]. Characterizing the description length of (binary)GA genomes promises to be more straight-forward, and the stage is thenset for measuring the cumulative complexity of GA+network solutions inthe manner originally suggested by Figure 18. But the time-complexitytrade-o�s mentioned above must also be incorporated, and interposing de-velopmental programs is even more problematic. This is the core of ourfuture theoretic work.In the the interim, there is another aspect of our hybrid's computationalcharacter that we have already begun to exploit: GA/connectionist hybridsare eminently parallelizable.6.1 Exploiting the parallelism of the GAThe availability of massively parallel computers, let alone large distributednetworks of loosely coupled computers, has increased dramatically. Unfortu-nately, our ability to e�ectively utilize the vast computational power o�eredby these parallel systems has not kept pace. Mizell (personal communi-cation) has singled out Monte Carlo-like computations as an example of\embarassingly parallelizable" applications (i.e., so naturally parallel thatyou get no credit for saying so) that have real utility and do tap the com-putational power of parallel machines and networks.The basic \population" model underlying the GA (i.e., each individualin the population independently evaluating the objective function) makes itanother candidate for parallelization, embarrased or not. We have exploitedthis feature of our hybrids in an extension of Grefenstette's GENESIS simu-lator developed by our group. The basic architecture of this Distributed GA(DGA) design is shown in Figure 19; Grefenstette has called this a \syn-cronized master-slave" architecture for the GA [Grefenstette, 1981]. Assumethat some number H of hosts are connected via a local area network.17 AHost Table with the name and network addresses of these hosts is con-structed, a BP Server program is initialized on each. Then, a GA Client17For our simulations, this environment has been a mixture of Sun 3's and 4's andvarious Vaxen, connected via Ethernet using TCP/IP protocol and NFS.
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Belew, McInerney & Schraudolf: Evolving Networks 39� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �EthernetGAClient BPServers� �i -xi = (w(0); �; �; . . .)Figure 19: Distributed GA Modelprogram, which is very similar to the standard Genesis package, is begun onone host. This program creates an initial population with each individualcorresponding to a particular parameterization of a BP simulation. Thesemay be varied along a number of dimensions18, although any one of ourexperiments has typically explored only one or two of these parameters.In order to coordinate distribution of BP evaluations to the availableservers, a Population Table is maintained, showing the status (Evaluated,Being-Evaluated, or To-Be-Evaluated) of each individual. Initially, a BPparameter packet is \dealt out" to each of the available BP servers. Typi-cally, the population size exceeds the number of BP servers, so as evaluationsare completed the Population Table is updated and the idle server is senta new parameter packet to evaluate. This process repeats until the entirepopulation has been dealt out at least once. After (an adaptively tuned)Timeout Period, any individuals still in the Being-Evaluated status aredealt out again, until all evaluations have been performed. The next gener-ation's evaluations then commence.This scheme works particularly well with a heterogeneous mix of com-puters of di�erent processing speeds and user loads because the packets sentto and from the GA server are then randomized, avoiding bottlenecks; aslight amount of randomized delay has been incorporated for similar e�ectin a homogeneous environment. More recently, the Host Table has beenaugmented with statistics about how long it is taking each host to performits BP evaluation. This information is used to dynamically alter the prior-18Our simulator allows variation of: Number of hidden units, network wiring, �; � val-ues, initial W(0) weights, squashing functions, training regimes (random, sequential,permuted, batch), and training time.
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TrialsFigure 20: Learning curvesity with which BP packets are assigned to the various hosts, for exampleavoiding heavily loaded or completely dead hosts.The time-complexity issues mentioned above become very signi�cant inthe DGA design. For example, one undesirable bottleneck is created by theend of each generation, when all but the last one or two individuals havebeen evaluated and the rest of the processors must wait; Grefenstette callsthis a \semi-syncronized master-slave" architecture [Grefenstette, 1981]. Ingeneral, with populations of reasonable size it is unlikely that these last fewevaluations are critical, and so it seems reasonable to relax the constraintof a rigidly synchronized generational structure. Similarly, we note thatpopulations of BP learning curves typically look something like those por-trayed in Figure 20, with some simulations terminating because they haveachieved the error criterion Err�, and others terminating at a maximumnumber of training trials T .19 Ideally, it should be possible for the GA toadvantageously manipulate both Err� and T , for example giving individu-als who reach the error criteria quickly a high �tness value, or interuptingslow evaluations if the rest of the population is done and has found good19We are grateful to Peter Todd for suggesting this view.



www.manaraa.com

Belew, McInerney & Schraudolf: Evolving Networks 41values. The interupted processor is then freed to begin work on a poten-tially more informative evaluation. Finding an appropriate balance betweenthe exploitation of quickly derived solutions versus the exploration of moretime-consuming ones is a matter requiring further investigation.7 ConclusionThis paper has reported on a series of experiments combining two popularclasses of adaptive algorithms, Genetic Algorithms and connectionist net-works. A survey of a wide range of potential mappings of connectionistnetworks onto the GA genome has convinced us that the most desirablerepresentations for the GA can be expected to be quite removed from themost obvious network representations (Section 3). Our own work is pursu-ing biologically plausible ontogenic models that create virtual independencebetween the space of genomes being searched by the GA and the weightspace of the connectionist networks (Section 3.4). We have demonstratedthat the GA can be successfully used to tune parameters for the back prop-agation algorithm, at least for the problems we have investigated (Section4). A much more substantial class of hybrids uses the GA to globally samplethe space of initial network weights | W(0) | from which connectionistgradient descent procedures can locally search (Section 5). These initial ex-periments have allowed us to focus several basic theoretic questions arisingwhen GA and connectionist techniques are combined (Section 6), and todevelop a distributed version of the GA that exploits the \embarrasingly"parellel nature of GA/connectionist hybrids.Throughout, our experiments and discussion have remained in the provinceof computer science, concerned with issues of algorithmic design rather thanthe natural (genetic, neural, ontogenic) origin of these algorithms. We closewith two observations about the computation being performed by these nat-ural systems.The �rst observation concerns a fundamental incongruity between theteleologies of biological systems and the arti�cial ones we run on computers.Much of Section 6 was concerned with refuting objections that wrappingthe GA around BP was a waste of (computational) cycles. In our arti�-cial algorithms it is appropriate to worry that a cycle used (for example)to produce a new generation might be better spent allowing an indivudal
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Belew, McInerney & Schraudolf: Evolving Networks 42another training epoch. That is, the total number of cycles is considered aconserved quantity. But it is not at all clear that biological populations areburdened by any such constraint. In fact, Evolution seems truly pro
igatewith its \cycles," creating as many redundantly exploring individuals as anenvironment's \carrying capacity" will allow, and allowing each to live aslong as mortality allows. As massively parallel computers become available,using a similarly pro
igate strategy of redundant search may become moresensible in algorithmic design as well (e.g., Hillis' search for e�cient sortroutines [Hillis, 1990]).Second, a computational view provides new insight into the exploitationof individuals' learning and the evolution of a species. Despite the intuitiveappeal of a theory that would allow individual learning to favorably in
uenceevolution, the biology of genetic reproduction explicitly rules out the direct,\Lamarckian" inheritance of acquired (e.g., learned) characteristics. Previ-ous work has demonstrated that at least some of the desirable interactionsbetween learning and evolution can be explained via indirect mechanisms,such as the \Baldwin E�ect" [Belew, 1990].Experiments reported here suggest another computational reason whydirect Lamarckian inheritance cannot be possible. In particular, Section5 discussed the complex relationship between the space of initial weights(W(0) ) searched by the GA and the space of ultimate weights discoveredby the gradient techniques of conjugate gradient or BP. But if W(0) is aproper, small subset of the ultimate weight space (as it was in the experi-ments of Section 5.2), the solutions found by BP cannot simply be \reversetranscribed" back into the GA's genomic representation! More generally,as the relation between network architecture and genomic speci�cation be-comes more and more indirect (for example through the use of the develop-mental translation programs we advocate) the ability to invert this relationdiminishes. That is, given a mature, successful individual, it becomes harderand harder to invert the mature cognitive representation responsible for thesuccessful performance into his or her original genetic representation.We conjecture further that it is in fact impossible for a system to inherit(at least some) acquired and critical characteristics, not because of biological\implementation details" with reverse transcription (for we know evolutionto be terribly inventive), but because it is computationally impossible toencode in the structural genotype the results of behavioral experiments. It isour goal to use our increasing understanding of the computational properties
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