Evolving Networks:
Using the Genetic Algorithm
with Connectionist Learning

Richard K. Belew
John Mclnerney
Nicol N. Schraudolph

Cognitive Computer Science Research Group
Computer Science & Engr. Dept. (C-014)
Univ. California at San Diego

La Jolla, CA 92093

rik@cs.ucsd.edu

CSE Technical Report #C590-174

June, 1990

www.manharaa.com

Belew, Meclnerney & Schraudolf: Evolving Networks i

Abstract

It is appealing to consider hybrids of neural-network learning algo-
rithms with evolutionary search procedures, simply because Nature has
so successfully done so. In fact, computational models of learning and
evolution offer theoretical biology new tools for addressing questions
about Nature that have dogged that field since Darwin [Belew, 1990].
The concern of this paper, however, is strictly artificial: Can hybrids
of connectionist learning algorithms and genetic algorithms produce
more efficient and effective algorithms than either technique applied in
isolation? The paper begins with a survey of recent work (by us and
others) that combines Holland’s Genetic Algorithm (GA) with con-
nectionist techniques and delineates some of the basic design problems
these hybrids share. This analysis suggests the dangers of overly lit-
eral representations of the network on the genome (e.g., encoding each
weight explicitly). A preliminary set of experiments that use the GA
to find unusual but successful values for BP parameters (learning rate,
momentum) are also reported. The focus of the report is a series of
experiments that use the GA to explore the space of initial weight val-
ues, from which two different gradient techniques (conjugate gradient
and back propagation) are then allowed to optimize. We find that use
of the GA provides much greater confidence in the face of the stochas-
tic variation that can plague gradient techniques, and can also allow
training times to be reduced by as much as two orders of magnitude.
Computational trade-offs between BP and the GA are considered, in-
cluding discussion of a software facility that exploits the parallelism
inherent in GA/BP hybrids. This evidence leads us to conclude that
the GA’s global sampling characteristics compliment connectionist local
search techniques well, leading to efficient and reliable hybrids.

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks ii

Contents
1 Introduction 1
2 Genetic algoritms 2
3 Mapping networks onto GA strings 4
3.1 FEncoding real numbers oL oo 5
3.2 Crossover with distributed representations 7
3.3 Wiring diagrams e 9
3.4 Developmental programso 13
4 Tuning BP parameters 15
5 Sampling and search 17
5.1 FExperiment 1: Conjugate gradient over closed domains 23
5.2 Experiment 2: BP and limited W(0) range 27
5.3 Experiment 3: BP over a closed domain 32
5.4 Sampling with the GA 34
6 Computational complexity in GA/BP hybrids 35
6.1 Exploiting the parallelism of the GA 38
7 Conclusion 411

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks il

List of Figures

1 Encoding weights Lo oo 6
2 Solution to the encoding problem 8
3 Four-quadrant problem o000 oL 10
4 Two solutions to the Four-quadrant problem 11
5 GA solution to Four-quadrant problem 12
6 Harp blueprint oo oL 14
7 Finding n and « with the GA 16
8 Sampling and search 000 18
9 Selecting W(0) 20
10 Gradient search isobars L oL 21
11 GA+CGhybrid o o 24
12 “Donut” of good W(0) 26
13 Multiple BP runs L oo 28
14 GA+4BP Initial Population 29
15 GA+4BP Final Population 30
16 GA+4+BP hybrid oo 31
17 Exponential GA4+BP hybrid o0 33
18 Cumulative Complexity 37
19 Distributed GA Modelo oo 39
20 Learning curveso 40

www.manharaa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 1

1 Introduction

It is extremely appealing to consider hybrids of neural-network-based learn-
ing algorithms with evolutionary search procedures, simply because Nature
has so successfully done so. In fact, new computational models of learn-
ing and evolution offer theoretical biology new tools for addressing ques-
tions about Nature that have dogged that field since Darwin [Belew, 1990,
Kauffman and Smith, 1986]. However, these same models have proven in-
teresting enough to computer scientists that they can also be treated as
artificial algorithms, divorced from the natural phenomena from which the
models originally sprung. Considered separately, both connectionist net-
works and “evolutionary algorithms” have recently drawn a great deal of
attention as new forms of adaptive algorithhm. On occasion, the two tech-
niques have been compared (e.g., [Brady, 1985]). The concern of the current
paper is the composition of these two types of algorithms: Can hybrids of
connectionist learning algorithms and genetic algorithms produce more ef-
ficient and effective algorithms than either technique applied in isolation?
This proves to be a very broad question, and the present paper attempts to
provide only a survey of results to date. Based on these experiences, we also
identify several key areas for further investigation.

Section 2 begins with a brief description of Holland’s Genetic Algorithm
(GA). While using the GA to guide connectionist learning systems through
specification of the networks’ structural characteristics is perhaps the most
natural, there are other hybrids of the two techniques that also seem promis-
ing. For example, Section 4 describes experiments that use the GA to find
good values for two critical parameters of the BP learning algorithm, learn-
ing rate () and momentum ().

Section 5 considers potential hybrids of GA and connectionist algorithms
from the perspective of the state spaces they search and their respective
methods. In brief, the GA proceeds by globally sampling over the space of
alternative solutions, while gradient techniques — including BP but also
methods like conjugate gradient — proceed by locally searching the imme-
diate neighborhood of a current solution. This suggests that using the GA
to provide good “seeds” from which BP then continues to search will be
effective. We describe several experiments in which the GA is used to select
initial values for the vector of weights used by BP and also by conjugate
gradient.

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 2

Section 6 briefly sketches some of the computational complexity issues
arising from GA/BP hybrids. A software facility that exploits the natural
parallelism when the GA is used to control multiple instantiations of BP
simulation is discussed, and some features of the time and space complexity
of the hybrid systems are considered.

2 Genetic algoritms

The GA has been investigated by John Holland [Holland, 1975] and students
of his for almost twenty years now, with a marked increase in interest within
the last few years [Grefenstette, 1985,Grefenstette, 1987,Schaffer, 1989]. The
interested reader is advised to begin a more thorough introduction to these
algorithms with the excellent new text by Goldberg [Goldberg, 1989].

Attempts to simulate evolutionary search date back as far as the first
attempts to simulate neural networks [Fogel et al., 1966]. The basic con-
struction is to consider a population of individuals that each represent a
potential solution to a problem. The relative success of each individual on
this problem is considered its fitness, and used to selectively reproduce the
most fit individuals to produce similar but not identical offspring for the
next generation. By iterating this process, the population efficiently sam-
ples the space of potential individuals and eventually converges on the most

fit.

More specifically, consider a population of N individuals z;, each repre-
sented by a chromosonal string of L allele values. An initial population
is constructed at random; call this generation gy. Each individual is eval-
nated by some arbitrary environment function that returns the fitnesses
p(x;) € R of each individual in gg. The evolutionary algorithm then per-
forms two operations. First, its selection algorithm uses the population’s
N fitness measures to determine how many offspring each member of gq
contributes to g;. Second, some set of genetic operators are applied to
these offspring to make them different from their parents. The resulting
population is now g1, these individuals are again evaluated, and the cycle
repeats itself. The iteration is terminated by some measure suggesting that
the population has converged.

A critical distinction among simulated evolutionary algorithms is with
respect to their genetic operators. Often the only genetic operator used is

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 3

mutation: some number of alleles in the parent are arbitrarily changed
in the child. This amounts to a random search around the most success-
ful individuals of the previous generation, and is therefore not very pow-
erful. The use of a simple mutation operator, coupled with the exponen-
tial amplification of good solutions afforded by selective reproduction, pro-
duce a powerful adaptive system on their own and some find this sufficient
[Fogel et al., 1966,Rizki and Conrad, 1986].

The central feature of Holland’s GA is its use of an additional cross-
over operator modeled on the biological operation of genetic recombination:
during sexual reproduction segments from each of the parents’ chromosomes
are combined to form the offspring’s. One standard version! of the cross-over
operation picks two points 1 < m,n < L at random and builds the offspring’s
bit string by taking all bits between m and n from one parent and the
remaining bits from the other parent. For example, if L = 10, m = 2,n = 6:

Parent(1): 1111111111 0ffspring(1): 1100001111
Parent(2): 0000000000 Offspring(2): 0011110000

The appeal of the GA is due both to empirical studies that show the
cross-over operator works extremely well on real, hard problems, and also
to the “schemata” analysis Holland has provided to show why this is the case.
Briefly, Holland’s Schemata Theorem [Holland, 1975, Thm. 6.2.3] suggests
that the initially random sampling of early generations is concentrated by the
GA’s search towards those areas of the search space demonstrating better-
than-average performance.

At the same time, the crossover operator imposes severe constraints on
the genomic representation, as the experiments with the representation of
connectionist networks here will demonstrate. Conversely, modern genetics
continues to uncover biological mechanisms that are potentially even more
powerful operators than crossover [Huynen and Hogweg, 1989]. This paper,
however, will restrict itself to the GA on the grounds that it currently pro-
vides the best balance between empirically demonstrated adaptive power
and theoretical understanding.

One key property of the GA is that it works on a population of (binary)

!Because it has proven such an important component of the GA, many other variations
of cross-over are under active investigation. For example, one; two or more cross-over
points can be selected; these points can be selected non-uniformly over the string, etc.

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 4

bit strings with absolutely no knowledge of the semantics associated with
these bits. Its only contact with the environment is the global fitness mea-
sure associated with the entire string. This is considered an advantage of
the algorithm because it ensures that the GA’s success is not related to the
semantics of any particular problem. This is not to say that the GA works
on all problems equally well, only that these differences can be attributed

to the underlying search spaces rather than the semantics of the problem
domain [Bethke, 1981].

Having committed ourselves then to the GA and its crossover opera-
tor, it is worth noting some of the central “pearls of GA wisdom” that
are most salient to the problem of encoding networks onto GA strings.
First, our encoding must respect the schemata: The representation must
allow discovery of small “building blocks” from which larger, complete so-
lutions can be formed. Ideally, this means that we should be able to prove
that the Schema Theorem holds with respect to our representation of a
network. Second, the well known phenomena of linkage bias insists that
we do our best to reflect functional interactions with proximity on the
string. For example, a great deal of connectionist work has highlighted
the role of individual hidden units; localizing the representation of these
hidden units on the GA string therefore seems one reasonable strategy.
[Merrill and Port, 1988 Montana and Davis, 1989]. Finally, we must worry
about the closure properties of the GA operators on the network descrip-
tions. It is not strictly necessary that these operators produce valid network
descriptions. But unless invalid descriptions are the exception and not the
rule, the GA will not get the information about regularities among valid
solutions in each new generation it needs to function properly.

3 Mapping networks onto GA strings

Within these basic guidelines, the ways of representing a weighted graph
with a string of bits are limited only by the imagination. One useful di-
mension along which these alternatives can be organized is what Todd has
called “developmental specification”: i.e., how complete and literal a rep-
resentation of the network is encoded on the GA string [Todd, 1988]. At
one extreme, it is possible to encode each of the network’s weights, in full
precision, and then use the GA to solve this as a standard multi-parameter
function optimization problem; in this case, there is no role for connectionist

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 5

learning. At the other extreme, we could emulate biology and use the ge-
netic description as input to a complex developmental intepretation process
that then constructs the network/phenotype. Between these two extremes
are a wide range of mappings in which the GA is used to constrain but
not completely determine a network’s structure, with connectionist learning
processes subsequently embellishing this partial solution.

Surely the most straightforward representation of a connectionist net-
work in a GA string is formed simply by concatenating all of the network’s
weights.? This approach leads to two types of design decision. First, how
are each of the real number weights to be represented? Second, in what
order are the weights to be concatenated?

3.1 Encoding real numbers

An immediate design issue facing any connectionist/GA hybrid is how the
connectionist weights are to be represented on the GA string. Appropriate
representation for real values on the basically discrete, binary GA chromo-
some is a matter of considerable debate within the GA community. Per-
haps for this reason, several of the earlier attempts to use the GA with
connectionist networks have left real numbers as discrete elements in their
representation, thus avoiding this encoding issue [Montana and Davis, 1989,
Whitley and Hanson, 1989]. The GA is then allowed to search for good com-
binations of weights, but is not used for finding the value of any one weight.
But this a prior: division of effort is something we hope to avoid; the many
successes with which the GA has been used to discover real-valued quantities
suggests that it is also unnecessary [DeJong, 1980].

Figure lhows the basic features of weight encoding. For each weight, as-
sume first that the real number to be found exists somewhere in the bounded
region [m, M]. Assume also that B bits have been allocated to represent each
weight; these are sufficient to divide the bounded region into 2 intervals.
The B bit index is then Gray-coded to minimize the Hamming distance
between indices close in value [Caruana and Schaffer, 1988]. Within the
specified interval, then, a real number is selected from a random variable
uniformly distributed over that interval. Note that this stochastic element

2Some tentative results suggest that with this encoding the GA can find weights more
quickly than back propagation, but only on fairly deep networks (i.e., with many hidden
layers) [Offutt, 1989].

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks

individual
weight
P100110101|01010P100111010 | | Genome
IGRAYCODE
|19$91| l B bits
INDEX
; o o o o 04 o o o o ;B_l Zin[0,.25- 1]
RANDOMIZE
1 Bin [0,26- 1]
Z
TRANSFORM
EEEEEEEEEEEEEREE Rin [m,M]
m M

Figure 1: Encoding weights

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 7

will often introduce great variability in the resulting networks’ performance,
as connectionist networks have been shown to be extremely sensitive to
small changes in weights [Kolen and Pollack, 1990]. More constructively, it
would be desirable if this encoding (the range encoded, the number of bits
used) were varied as a consequence of the variability experienced across the
population. This kind of dynamic parameter encoding for the GA is being
explored separately [Schraudolph and Belew, 1990].

3.2 Crossover with distributed representations

Perhaps the most important feature of representation for the GA is prox-
imity. Because two alleles are much more likely to become separated by a
crossover operation if they are far apart on the string than if they are close
together, it becomes less and less likely that the GA will be able to discover
and exploit nonlinear interactions between any two alleles as they are put
farther apart on the string. In our case, this lesson suggests that the best
representation will have dependent weights close together on the string just
if these weights are functionally dependent on one another.

Consider a standard three-layer, feed-forward network. At least in these
networks, the obvious functional units correspond to units in the hidden
layer. This suggests that all weights associated with one hidden unit should
be placed together on the string. Merrill has performed experiments that
substantiate this [Merrill and Port, 1988]. Such functional units can be
made even more cohesive by introducing “punctuated” crossover operations,
which have higher probability of breaking the chromosome at certain punc-
tuated points in the string (e.g., between one hidden unit’s weight and an-
other’s) [Schaffer and Morishima, 1985].

One important property of the solutions learned by networks, however,
is that they are generally far from unique. In the context of the GA, this
means that crossover among two relatively good parents who have discovered
different solutions can lead to abysmal offspring. Consider again the example
of a simple three-layer, feed-forward back propagation (BP) network, and
consider the solutions it might discover to the “encoder” problem.® A typical
solution, reported in the PDP volumes [Rumelhart et al., 1986, p. 337], is

?The encoder problem involves mapping N orthogonal patterns through a hidden layer
of loga N hidden units onto a set of N orthogonal output patterns [Rumelhart et al., 1986,
p. 335].

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 8

O

log, N

OO0 On

Figure 2: Solution to the encoding problem

shown in Figure 2. Note that while this network discovered the same binary
encoding scheme a computer scientist might suggest, it also made use of
intermediate activation values. In general, we can expect such individual
variation among the solutions found by connectionist networks, and so in
their corresponding genetic descriptions.

Less subtle but just as problematic variations arise because fully isomor-
phic solutions can be obtained simply by permuting the hidden units. That
is, two networks can be identical up to the arbitrarily assigned indices of
their hidden units. But (at least in the representations considered hereto-
fore) the location of a hidden unit weight on the GA chromosome depends
entirely on its (arbitrarily assigned) index!

The invariance of BP networks under permutation of the hidden units is
such a devastating and basic obstacle to the natural mapping of networks
onto a GA string that we might consider ways of normalizing network so-
lutions prior to crossover. It seems, for example, that at least in the case
of BP networks with a single hidden layer, the differential weighting of the
hidden units to the “anchored” (i.e., constant and nonarbitrary) input and
output layers might be used to recognize similarly functioning hidden units.

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 9

Even establishing a correspondence among hidden units of two three-layer
networks that have been trained to solve the same problem appears to be
computationally intractable, even when we assume that the only difference
between the two networks’ solutions is a permutation of hidden units. In
realistic networks many other different solutions to the same problem can be
constructed, for example by reversing the sign of all weights, or taking other
“semi-linear combinations”* of the weights. We therefore conclude that at-
tempting to normalize networks before combining them is not feasible.

Thus, the specifics of a network’s architecture are underdetermined by
the problem it is trying to solve. Consequently the genetic representations
of these varying architectures cannot be expected to share the similarities
(schemata) that the GA needs in order to be effective. If very small popula-
tions are used with the GA, there is not “room” for multiple alternatives to
develop. In this case, whichever solution is discovered first comes to dom-
inate the population and resist alternatives. This approach has been used
successfully by Whitney [Whitley and Hanson, 1989]. Alternatively, the cor-
respondence between genotype and phenotype can be made less direct; the
first step in this direction is discussed in the next section.

3.3 Wiring diagrams

As we move away from full specification of all network weights on the genetic
string, the goal will be to use the GA to specify some constraints on a
network architecture. Within these constraints, the connectionist learning
procedure then does its best to optimize the objective function via weight
modification.

One of the most straightforward architectural descriptions for a network
is a binary “wiring diagram.” The links of a three-layer feedforward network
with [input units, H hidden units and O output units are encoded as
a binary string of length H x (/ + 1 + O) + O, with all links (including
the bias) from and to one hidden unit falling contiguously. This wiring
specification is given to a simulator that uses BP to do its best to learn
the specified task from a series of training examples, and the network’s
final mean squared error (MSE) becomes the fitness associated with that
individual. An entire population of such individuals form a generation. The

*We speak a bit loosely here. Because BP networks depend on nonlinear “squashing”
functions, simple linear combinations are not quite adequate.

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 10

0 R

input 2 f-------camnn-

P L L L

=

0.0 input 1 1.0

Figure 3: Four-quadrant problem

GA is used to replicate and alter the binary network descriptions to form a
new population, and the cycle is then repeated.

Miller et al. report on experiments using this sort of wiring diagram
[Miller et al., 1989]. Their most striking result was with the Four-quadrant
problem, a generalization of the XOR problem to a two-dimensional real
interval; see Figure 3. This problem is interesting because it admits at
least two types of solution, as shown in Figure 4. The “fat” solution uses
only a single layer of hidden units, with the number of hidden units required
growing as the desired precision increases. The “skinny” solution makes use
of two layers of exactly two hidden units each. Each input unit is connected
to only one of the hidden units in the first layer; this layer simply changes
the real inputs to binary values. The rest of the network can then solve the
problem as a standard XOR network. Since tradeoffs between wide and deep
networks are an important and open issue in connectionist learning systems,
this problem is particularly valuable because it provides some experience
with using the GA to design networks with more than one hidden layer.

Using a network architecture description that allowed either of these so-
lutions to form, the GA in fact consistently found intermediate solutions

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 11

506 00 é@
7
0

Figure 4: Two solutions to the Four-quadrant problem

-O—0

like that shown in Figure 5. Note that while this network makes use of
both hidden layers, it does not solve the Four Quadrant problem in either
of the regular fashions described above. Miller et al. also report that the
GA consistently created a link directly from the input unit to the output
unit, a feature that was allowed by their network architecture description
but not anticipated by them. It is important to note, however, that some of
these solutions existed in the random initial population with which the GA
began, and the GA converged on a population of such individuals in only
a few generations. The GA did not therefore play an important role in the
discovery of these solutions, and any iterated restart of BP can be expected
to have performed similarly.

Several comments should be made about binary wiring diagrams like
these. First, experiments such as these impose an unfortunate asymmetry
between the adaptation effected by the GA and that done by connectionist
learning. Virtually all connectionist learning algorithms allow connections
to come to have zero weight, making them act as if the connections were not
there. Thus an existing connection can learn to have zero weight, but an

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 12

/

Figure 5: GA solution to Four-quadrant problem

absent connection cannot ever become non-zero. We should expect this bias
to be exploited by any hybrid adaptive system that combines evolutionary
and (connectionist) learning sub-systems.

Second, the binary specification of link presence or absence can easily be
generalized to a wider range of constraints on network architectures. For
example, Todd suggests that a ternary specification might specify that a link
was absent, restricted to positive weights or restricted to negative weights
[Todd, 1988]. The range of search allowed the connectionist learning proce-
dure by the genetic network description can be progressively constrained in
this fashion until, in the extreme, the GA is specifying each weight exactly.
Conversely, the process of dynamic parameter encoding (DPE) can be used
to focus the GA’s search on those regions with least variability, so that a
priori divisions of the search between GA and gradient procedures come to
be reconsidered [Schraudolph and Belew, 1990].

Third, as soon as the goal of our hybrid algorithm is changed from finding
the weights for a net that can do the best job, to finding an architecture
and also weights for that architecture that can do the best job, our search
criterion must change correspondingly. More specifically, if the GA is to

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 13

find good architectures, the function it optimizes must include not only
a measure of error (e.g., MSE), but also a measure of the complexity of
the network. Otherwise, if there is no (fitness) penalty paid for having
more links, for example, there will be no adaptive pressure to use more
parsimonious representations. The absense of any such complexity term in
the Four Quadrant experiments of Miller et al. may account for the fact
that the GA found neither the “fat” nor “skinny” solution, but something
with (potentially redundant) direct links from input to output; see Section

6.

Finally, wiring diagrams do not avoid the “underdetermined architec-
ture” problems described in the last section. The problem, at least in part,
is that the relationship between genotype and phenotype is still inappro-
priate: features of the network that are inconsequential to its computation
(e.g., the indexing of the hidden units) are reflected by radically different
genetic descriptions. And so we are pushed another step away from com-
plete network specification and towards the interposition of a developmental
process between genotype and phenotype.

3.4 Developmental programs

The GA is generally cast as a function optimizer, with the GA manipulating
values of z in order to optimize some function f(z). One critical aspect of
biological evolution that is missed in this formulation is that the space of
genotypes manipulated by genetics is only indirectly related to the space of
phenotypes which are evaluated by the environment. The process relating
genotype to phenotype is, of course, ontogenetic development.

The developmental process is an extraordinarily complicated adaptive
system in its own right [Purves, 1988], and attempting to incorporate it
within the already complicated hybrids being considered here is problematic.®
But the incorporation of a developmental interpreter means that the GA can
be allowed to search through representations for which it is more well-suited
than those derived directly from networks. Just which developmental model
will prove most satisfactory in the context of evolution/development /learning
hybrids is still an open and important question, but there are a few promis-
ing leads.

®For example, the developmental interpreter should, by rights, itself be specified on
the genome.

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 14

(I Mm Start-of-Area
Area 0 Area ID
Area Total Size
ﬁ Pa.lf’iame_tel’ Dimension 1 Share
Specification Dimension 2 Share
Area 1 B Dimension 3 Share

ﬁ Start-of-Projection
Target Address

Projection Address Mode
Specification

(0 or more)

Dimension 1 Radius

Dimension 2 Radius

Dimension 3 Radius

Connection Density
Initial Eta
Eta Slope

Area N

= % End-of-Area

Figure 6: Harp blueprint

Harp et al. describe a very interesting model in which the GA searches
for a network “blueprint” [Harp et al., 1989]; see Figure 6. The description
of neural networks in terms of “areas” (i.e., sets of units with varying spatial
extent), and “projections” (i.e., sets of edges randomly connecting units from
one area to another) certainly seems to capture much of the architectural
regularity of nervous systems in vertebrates.

These experiments are consistent with only the most basic features of
the corresponding biological systems, and we intend to explore more sat-
isfactory models. Purves outlines the basic features of a more elaborate
cell adhesion model of neural development [Purves, 1988]; Edelman also
desribes an elaborate but idiosyncratic model [Edelman, 1987]. The de-
tails of retina-to-optic tectum mappings have been described by Cowan
[Cowan and Friedman, 1990]. Stork has used a developmental model with
the GA to show how evolutionary “pre-adaptations” may be responsible for

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 15

certain anomolous neural connections in the modern crayfish [Stork et al., 1990].

The range of connectionist network representations for the GA surveyed
in this section still leaves much to be explored. Further, the GA can be
used with connectionist networks in other ways than specification of net-
work architecture. The next two sections describe experiments that use the
GA to control other, non-architectural parameters of connectionist learning
systems.

4 Tuning BP parameters

The central experiments of Section 5 use the GA to find good initial weights
from which a gradient descent procedure like back propagation (BP) can
reliably converge on a solution. While these investigations are largely or-
thogonal to the use of the GA for the kind of network architectural def-
inition described in the last section, the well known symmetry problem®
was used because, like Miller et al’s Four Quadrant problem (cf. Sec-
tion 3.3), it is known to permit two distinctly different network solutions
[Minsky and Papert, 1988, p. 252-253]. For the experiments reported here
we used the six-bit version of this problem. A three-layer feedforward net-
work with six input units, six hidden units, and one output unit was speci-

fied.

Before beginning these experiments, it was necessary to set the learning
rate (1) and momentum («) parameters of BP. These parameters are known
to be strongly coupled, dependent on characteristics of the problem being
solved, and critical to the successful convergence of the learning procedure.
As a result, finding good values for and « is more art than science and
generally a matter for trial-and-error search. Because the GA has often had
success at strongly non-linear function optimization problems like this, we
began by using the GA to find good values for n and a. The ranges

0<n<L8 0<a<Ll0

were explored, and each parameter was allocated 10 bits. This unusually
large range for 1 was used because preliminary experimentation with more

SGiven a binary vector of length 2N, the net is to produce a value of unity on its single
output unit iff; for all input units I; = by_i41,2=1,..., N.

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 16

ALPHA

0.125 0250 0.375 0.500 0.625 0.750 0.875 1.000

00

=]
=) T T T T T T T

Figure 7: Finding n and a with the GA

conservative values (e.g., n < 2,7 < 4) consistently resulted in the GA
converging on the maximum value in that range.

With the GA selecting values for these two parameters for each individual
in a population of size 50, an otherwise standard BP simulation was trained
for 200 epochs and its mean squared error (MSE) at the end of this traing
was used as the individual’s fitness.

Figure 7 shows the results after 200 generations, with the diameter
of each circle indicating the reciprocal of the MSE (i.e., larger circles mean
better performance) for each individual in the last generation. Conventional
wisdom calls for n = 0.1, = 0.2, but the GA consistently converged on
values of n &~ 2.5! This means that BP is moving rapidly along the error
surface. We conjecture that these values depend on the number of learning
epochs (7)) we allowed each BP optimization before using the net’s MSE
value. We used 7 = 200 epochs, which is an extremely short training

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 17

period for the six-bit symmetry problem”. Networks using more “patient”
values for n and a were unable to solve the problem in the time alloted, and
only those that “went for broke” were successful. It seems likely that more
conservative values for and a would be found if more trials were allowed,
and even more radical values might be found if this number were reduced.®

Note also that both large and small diameter circles are sometimes vir-
tually concentric. This means that while the GA consistently converged on
fairly narrow ranges for and «, there is still high variability in the fitnesses
of individuals with very similar parameters. This is because the BP sim-
ulations have a highly stochastic element, viz., the random initial weights
assigned. The values for n = 2.5, & = 0.33 were robust enough under varying
initial weights that they could be exploited by the GA, but the selection of
good initial weights is still critical. The identification of these good initial
values is the major focus of our next experiments.

5 Sampling and search

The use of the GA to tune BP parameters has proven practically useful,
but there is nothing terribly profound about this type of hybrid. The GA is
doing function optimization over a set of parameters in the same way that
GAs have been used since DeJong [DeJong, 1980]. A more important com-
bination of these technologies arises from the observation that local search
performed by back propagation and other gradient descent procedures is well
complemented by the global sampling performed by the GA; consider Figure
8. Gradient descent procedures all sample some characteristics of their local
neighborhood to determine a direction in which the search is to proceed.
Sophisticated techniques for gradient descent (of which BP is only one) ef-
ficiently combine characteristics of the local neighborhood to form a good
next guess. But, depending on characteristics of the objective function be-
ing searched, this local information may be misleading as to the location of

"Randomly restarted BP runs using 7 = 0.1, = 0.2 reliably converge to the solution
in approximately 4000 epochs.

87t should be noted that the use of these high, quick parameters for BP seem to
depend critically, at least in the six-bit symmetry problem, on the order in which training
instances are presented. Our simulator allows exemplars to be presented in: sequential
order, random order with replacement, random order without replacement, or “batch”
training. Because we have had most success on the six-bit symmetry problem using
random with replacement ordering, these experiments were run with this option.

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 18

Q Sample point selected by GA

LY

Figure 8: Sampling and search

www.manharaa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 19

the actual optimum. In particular, gradient descent procedures are known
to be subject to local minima. Sampling techniques like the GA, on the
other hand, are effective because they ensure broad coverage over the entire
domain. The GA works by collecting information from the early and virtu-
ally uniform sampling of early generations, and then using this information
to guide subsequent sampling towards particularly promising regions. The
selection of a new element of the domain to evaluate therefore exploits global
information from across the domain. Unfortunately, information in the im-
mediate neighborhood of each of these samples plays no role in subsequent
GA sampling, meaning the algorithm can come frustratingly close to the
solution without actually finding it.

Combining the GA’s global sampling with BP’s local searching there-
fore seems an extremely natural and promising form of hybrid. It can be
compared to the simple process of hill climbing with restart, with the key
advantage of the GA being that it promises to sample in a much better than
random fashion [Ackley, 1987.Goldberg, 1989].

When placed in the context of connectionist networks, the strategy just
expressed suggests that the GA be used to create “seeds”: starting points
from which a connectionist search proceeds. In connectionist learning terms,
this corresponds to using the GA to prescribe the initial weights, W(0) , on
a network’s links. A schematic view of this hybrid construction is shown in
Figure 9. The GA selects an initial weight vector for each individual in a
population, each is allowed to learn with BP for some number of trials, and
the error rate at which it is performing at this time is considered to be the
fitness of that individual.

Thus the GA will sample those regions of weight space from which it is
reliably possible to reach good function values via gradient descent. There
is a pleasing symmetry to this search, in that the best initial weight vector
(found by the GA) is obviously the same as the final weight vector (found
by BP); the two algorithms’ solutions are interchangable in this respect. It
is important to note, however, that the two algorithms are coupled in this
symmetric search only if the range of initial weight values being explored by
the GA is coextensive with the domain of solution weight vectors ultimately
discovered by the gradient descent procedure.

In practice, these two sets are often quite different. For example, the PDP
volumes recommend “... small random weights” [Rumelhart et al., 1986, p.

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 20

Figure 9: Selecting W(0)

330]; Miyata has operationalized this as “... uniformly distributed ran-

dom numbers between :E%” [Miyata, 1987]. Final weights, on the other
hand, can be widely distributed, and often fall outside this initial distrution
[Hanson and Burr, 1990].

The distinction between starting and final points in weight space also
complicates our characterization of just what the GA is looking for. While
it is true the GA is seeking W(0) that are “close to” the solutions ultimately
found by a gradient technique, it is important to note that the relevant mea-
sure is not the natural (e.g., Euclidean) distance between initial and final
weight vectors. Rather, good W(0) found by the GA are close to good final
solutions with respect to the gradient procedure being used. Figure 10 cari-
catures the search regions induced by two different gradient techniques, all
begun from the same initial point in weight space. For a particular gradient
technique, these regions can be characterized in terms of “isobars” requiring
the same computational effort (e.g, BP training epochs). We can imagine
error surfaces over which it takes a gradient procedure many iterations to
move a short Euclidean distance, and the converse is also true. Further,
the range of solutions “reachable” by a gradient procedure varies with the
procedure being used; points that are easy to reach via BP may not be
reachable via conjugate gradient techniques, and vice versa.

Finally, sampling procedures like the GA require that the gradient pro-

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 21

Searchp

Isobars

w(0): Start of search

Searchpg
Isobars

Figure 10: Gradient search isobars

www.manharaa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 22
Expt. | W(0) range | GA Encoding | Gradient proc. | Epochs
1 +10° Uniform Conj. grad. N/A
2 :l:% Uniform Back prop. 200
3 +[1072, 5] Exponential Back prop. 40

Table 1: W(0) Experiments

Total Trials = 3000
Population Size = 50
Structure Length = 128
Crossover Rate = 0.600
Mutation Rate = 0.001
Generation Gap = 1.000
Scaling Window = 5
Max Gens w/o Eval = 2
Options = acel
Table 2: GA parameters

cedure reliably converge on a good solution. Recent results by Kolen and
Pollack demonstrate that “BP is sensitive to initial conditions” (i.e., what we
call W(0)) [Kolen and Pollack, 1990] , and so finding such reliable regions
is non-trivial (cf. Section 5.4). Thus the goal of our search is somewhat dif-
ferent from most connectionist systems: we are interested in the distribution
of good solutions rather than simply identifying some of these.

Three sets of experiments were performed to test the feasibility of using
the GA as a source of W(0) seeds for gradient techniques that then did
their best to optimize further; these are summaraized in Table 1. In the
first set a conjugate gradient (CG) method was used, and the range of W(0)
explored by the GA was made very large, effectively coextensive with that
of the CG procedure. In the second set of simulations, BP was used and the
GA was allowed to explore within the more typical range :l:%. Finally, an
expanded range was searched by the GA, but an exponential encoding was
used that allowed particularly refined searching of small W(0) values. Basic
parameters of the GA were also kept constant across the three experiments;
see Table 2. Our group has developed a sophisticated GA simulator,
Genesis-UCSD, and it was used for all of the experiments reported here;
Section 6.1 describes a recent extension of this simulator that allows it to
run across a distributed network of processors.

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 23

5.1 Experiment 1: Conjugate gradient over closed domains

To ensure the closure properties between GA and gradient search procedures
mentioned above, the range of initial weights were allowed to run between
4+10°%. Eight bits were allocated to represent each weight. Thus the GA
was able to specify an initial weight with extremely poor precision: FEach
allele value corresponds to a range of approximately 800 (see Section 3 for
details). Conjugate gradient (CG) optimization was used in these experi-
ments because it is known to converge to solutions more quickly and reliably
than heuristic second-order optimization techniques like BP (with a momen-
tum term) [Barnard and Cole, 1989]°. The GA was used to create an initial
population of W(0) vectors, CG optimized each of these, the MSE of each
result was used for the individuals’ fitnesses, the GA used these to produce
a new population of W(0) vectors, and the cycle repeated itself.

Figure 11 summarizes the basic results of these experiments. The average
mean squared error (MSE) of the GA4+CG hybrid is plotted on a logarith-
mic scale, as a function of generation; this curve is labelled GA4+CG(avg).
To put the results of this hybrid method in perspective, it is appropriate to
compare them to use of GA and CG methods used in isolation. For com-
parison with the CG-alone method, multiple randomly restarted iterations
of CG were performed an equivalent number of times and this average base-
line is labeled CG (avg). The comparison of averages is appropriate given
our interest in expected performance, but the simple average does blur infor-
mation about the underlying distribution. Also, in most applications, the
minimum of multiple restarts would be used. To facilitate this comparision,
multiple randomly restarted iterations of CG were performed an equivalent
number of times and the minimum of these is drawn as a baseline labeled

CG (min)

Alternatively, the hybrid can be compared to search by the GA alone
wherein initial W(0) vectors selected by the GA were evaluated without
modification by CG. In both cases, the hybrid approach did significantly
better than either the gradient technique or the GA used in isolation. Thus,
on average, the hybrid of GA+CG can solve the problem more effectively
than either a randomly started CG search or GA sampling uninformed by

°The code implementing the CG method was obtained from the OPT package of
Barnard and Cole. This code required extensive modification to allow it to be used for
these problems, and to fix a serious bug it contained.

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 24

1.20

wn

8

<

o

8

(=}

ﬁ

S L\ CG(avg)
jmy
I L VAV catmin
g o
>
< GA(avg)

9 |

o

GA+CG(avg)

o

8

(=}

LAM(avg)

wn

44

(=)

o

=] T T T T T T T

0 10 20 30 40 50 60

Generations

Figure 11: GA+CG hybrid

www.manharaa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 25

some gradient search.

At the end of 60 generations the GA4-CG hybrid had converged significantly!®.
The solutions it found were odd, in that large magnitude weights were used,
often greater than £10%. This seems to be due to two factors. First, the
GA will sample large W(0) weights more often than small ones, simply be-
cause there are so many more of them. Uniformly dividing a large weight
range into a finite set of regions results in the low end of the dynamic range
being grossly under-represented. (This suggests non-uniform, exponential
encodings; see Section 5.3.) Second, the inclusion of even one large weight
in the inner product summation performed by connectionist units is enough
to push that unit’s activity into the asymptotic range of its squashing func-
tion, effectively drowning out the contribution of any smaller weights. More
precisely, the derivative of the sigmoidal squashing function is near zero for
large weights, meaning that almost no error information is available for BP.
The result of these two factors is that the solutions found by these exper-
iments were poor in absolute terms.!! (BP can find perfect solutions to
six-bit symmetry, at least if given enough trials; see Section 6.)

Our picture of the range of good W(0) values now looks like a “donut,”
with both lower and upper bounds; see Figure 12 If W(0) is too near the
origin, the network is unable to break the symmetries of its hidden units
so that they all attempt to do the same job, and the network will remain
on the “local maximum” of the origin originally described by Rumelhart
et al.[Rumelhart et al., 1986, p. 330]. But if W(0) is too large, the net is
drawn to solutions with large weights that grow without bound. Worse, any
one large weight can push a unit into the asymptotic region of its sigmoidal
squashing function, effectively masking any error signal. For these reasons,
the remaining two experiments of this report restrict the GA’s search for
good W(0) values to a limited range.!?

Before discussing these other experiments, however, another interesting

19137 out of 384 alleles converged to at least 90%; Bias = 0.888.

1 Another possible explanation is that the CG method was used inappropriately. Con-
jugate gradient techniques work well for moving quickly to the bottom of an attractor
basin, but they may not be the best way to find such basins in the first place. This sug-
gests that (yet another!) hybrid method would use BP for a few iterations, to get into a
good attractor basin, and then invoke CG to finish mimimization. We are exploring this
technique.

12In a forthcoming report, we investigate a theoretic characterization of the donut of
appropriate W (0) values.

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 26

Prior probabilty
of converging
to solution

Figure 12: “Donut” of good W(0)

www.manharaa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 27

comparison is possible when the GA and gradient methods share coextensive
search spaces. The GA4+CG hybrid can be compared to a third technique
that might be called a “Lamarckian” algorithm: the solution found by CG
is remapped into the genetic encoding and this new specification is returned
to the GA population in place of the original W(0) . That is, instead
of giving the GA only the information that some individuals are close (in
the gradient search sense) to a good solution, we do our best to “reverse
transcribe” the solution actually found back into its genomic correlate, and
give this to the GA to act as a new, genetically engineered parent. At
the end of the runs shown in Figure 11 this Lamarkian variant appears to
do only as well as the standard GA+CG hybrid, but in longer runs the
Lamarkian algorithm does significantly better. Note that again the ability
to invert from learned solutions back into their genetic correlates depends
on these two domains being coextensive. In fact, even in these experiments
in which the range of W(0) was extended far beyond normal, the CG often
moved to values outside the range of £10°; in this case, the genetic value
was given its maximum or minimum value. This is only one, simple example
of the difficulty in inverting the results of learning back into their genetic
correlates; see Section 7.

5.2 Experiment 2: BP and limited W(0) range

With the exception of the folk-wisdom (mentioned in Section 5) that initial
weights should be small (£1) and random, little is known about the selection
of good initial weights. Empirically, it has been widely observed that the
performance of BP is highly variable with respect to the choice of W(0) .
Figure 13 is typical. This shows 10 standard!® runs of BP varying only in
their initial values for W(0) . All we can say is that sometimes BP works
and sometimes it doesn’t; this is far from satisfying.

The question to be investigated here is whether the GA can find regions
of the W(0) space that reliably lead to good (in the sense of low MSE)
networks. The basic construction of the GA+BP hybrid algorithm is the
same as the GA+CG hybrid above: The GA was used to create an initial
population of W(0) vectors, BP was then used to optimize each of these,
the MSE of each result was used for the individual’s fitness, the GA used

13 Miyata’s SunNet simulator [Miyata, 1987] was used on the problem of six-bit symme-
try with six hidden units; # = 0.1, = 0.2.

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks

28

0.0

0.08

0.07

0.06

0.0

0.04

0.03

0.02

0.01

Figure 13: Multiple BP runs

dUUU
EITDI‘ g5 d

7o
{inction o steps

dElUU

4000

05000

VVVVVVL.TTTAUATTAUTAUAWU. UUT

Belew, Meclnerney & Schraudolf: Evolving Networks 29

0.15
|

‘H | U ﬁ,“,‘Mu

Epochs

MSE
0.10
|

0.05

H
[v*

0.0

0 100 300 400

Figure 14: GA4BP Initial Population

these to produce a new population of W(0) vectors, and the cycle repeats
itself. However, for the reasons discussed in the previous section, the range
of W(0) explored by the GA was limited to the standard :l:%. Note also
that an unusally high learning rate (n = 2.5) similar to those discovered in
Section 4 was used in these BP simulations.'* This rapid learning rate made
it possible to give each BP network only 200 training epochs before judging
its MSE fitness.

Figure 14 shows the learning curves for individuals in the initial GA
population. Except that the curves are much noiser (due to the high 1 value
used), the same high variability of Figure 13 is exhibited. And this is to
be expected since the GA’s initial population is also picked in a uniformly
random fashion. Figure 15 shows that after 200 generations the GA was
able to find a region of W(0) space from which BP can reliably converge
on solutions.

As with conjugate gradient, the performance of the BP+GA hybrid can
also be compared to the performance of BP and GA used independently;

M These experiments were done before the simulations of Section 4 were complete, and
hence the values (n = 2.5, ¢ = 0.0) are less than optimal.

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 30

0.15
|

MSE
0.10
|

0.05
|

0.0

0 100 200 300 400

Epochs

Figure 15: GA+BP Final Population

this comparision is shown in Figure 16. Here the generation average mean
squared error (MSE) of the BP+GA hybrid is plotted on a logarithmic scale,
as a function of generation and labelled GA4+BP(avg). The generation
average of population in which GA was used to select W(0) and the MSE
of these individuals is taken immediately (i.e., without any BP learning) is
labeled GA(avg). For comparison with BP, two baselines corresponding to
the average and minimum of an equal number of multiple random restarts
of a BP simulation are shown as BP(avg) and BP(min), resp.

There are several things worth noting in this comparison. First, the GA
used by itself fares almost as well as the BP average. This is particularly
striking given that the GA is only being allowed to sample in the original
W(0) space, :l:%. Second, use of the BP+GA hybrid creates a population
of 50 individuals who, while very different from one another, have MSE
performance almost identical with the best found by 5000 random restarts
of BP alone. Finally, after only a few generations, the BP4+GA hybrid is able
to find strictly better individuals than could be found by 5000 independent
BP runs, and ultimately finds a much better one. As with the conjugate
gradient experiments of Section 5.1, the hybrid of GA+BP can reliably solve
the problem more effectively than either a randomly started BP search or

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 31

o
o
Te}
S
o GA(av
< 7 w\ BP(avg
0| /M A M — BP+GA(av
o Y Bhmm 9
m
%)
S o
ISEE
-
[o]
o
o
N T .
' BP+GA(min)
o
@
Te}
=
Q
<5 [l l l l I
0 20 40 60 80 100

Generations

Figure 16: GA4+BP hybrid

www.manharaa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 32

GA sampling without guidance by local information.

5.3 Experiment 3: BP over a closed domain

The results of the previous two sets of experiments appear to create a para-
dox: The GA should be allowed to sample over the same “closed” space of
weights through which the gradient technique is to search, but if the genome
is allowed to encode the entire range of weights, small W(0) weights can
be only sparsely represented, and the probability of the GA’s sampling the
fertile region in which all the weights are near zero is very small indeed.
This paradox can be resolved, however, if the requirement that the W(0)
range be uniformly represented on the genome is relaxed. Real numbers are
mapped onto the GA chromosome as before, but the final TRANSFORM stage
(cf. Figure ?7) is changed from a linear transformation to an exponential
one, s0 as to emphasize sampling of small weights.

Specification of an appropriate exponential sampling transform turns out
to be a subtle issue that we are continuing to investigate. For these exper-
iment our initial strategy was simply to select upper and lower bounds for
W(0) , and the number of bits per weight. Based in part on Hanson and
Burr’s analysis of two large and well-studied networks [Hanson and Burr, 1990],
we allowed W(0) to range between approximately:

0.01 <| W(0) |< 12

and allowed 10 bits/weight.

Using this encoding, the experiments of the last section combining GA
and BP were repeated. The first observation was that this encoding was
propitious in that it allowed extremely short BP training times. Figure 17
shows the results of combining the GA sampling process with only 40 epochs
of BP training; as above, these results are compared to multiple, random BP
runs and the use of GA without any BP search. With this short training,
the best solution found by the hybrid GA4+BP system was still better than
that found by an equal number of randomly restarted BP solutions, but the
difference in MSE’s was less dramatic.!®

158¢ill, the hybrid’s solution solved the six-bit symmetry problem to criterion while the
BP network did not.

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 33

o
S
Te]
S
GA(avg)
o
S BP(avg)
To]
o -
o BP+GA(avg)
]
S o
ISEER
-
[o]
o
o
~
o |
? BP(min)
\ BP+GA(min)
Te]
=
e
5 [I I I I I
0 20 40 60 80 100

Generations

Figure 17: Exponential GA4+BP hybrid

www.manharaa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 34

With longer training times (e.g., the 200 epochs used for the previous
section’s experiments), the problem became too easy for the GA: initial,
random generations already contained many good solutions. We conjecture
that constructing initial W(0) vectors with many small weights but a few
large ones — in effect much like the final weight distribution reported by
Hanson and Burr — is enough to break hidden unit symmetries and still al-
low most error information past the sigmoid’s derivative. When the training
time is then reduced (down to 40 epochs!) to compensate for the facilatory
effect of the exponential encoding, the GA is again able to find good regions
of W(0) .

5.4 Sampling with the GA

The picture we have, then, is of a highly “textured” error surface, with the
starting point of a gradient technique’s search dramatically influencing its
ability to get to satisfactory minima. Some basic bounds on a good W(0)
region can limit search to a “donut” around the origin; see Figure 12 and
accompanying discussion. But even within this donut there is significant
variability.

The experiments of Kolen and Pollack provide an interesting compar-
ison with our own [Kolen and Pollack, 1990]. Among other experiments,
they performed a Monte Carlo search through (what we call) W(0) -space
for the problem of 2-bit XOR with two hidden units. First, they echo our
“donut” observation: “... the magnitude of the initial condition vector (in
weight space) is a very significant parameter in convergence time variabil-
ity.” Second, they go further than characterizing the error surface as simply
textured, to propse that they are “fractal-like.” But the central difference
between this work and our own is our use of the GA, effectively in place of
their uniformly distributed Monte Carlo iteration. The moral Kolen and Pol-
lack draw from their experiments is that since BP simulations are extremely
sensitive to their initial W(0) values, “... the initial conditions for the net-
work need to be precisely specified or filed in a public scientific database.
[Emphasis in the originial].” We believe our conclusion is more optimistic,
and certainly less bureacratic: Use of the GA’s non-random search allows
us to judiciously sample W(0) so as to identify regions from which we can
reliably converge on good solutions, while simultaneously allowing us to cut
training times by as much as two orders of magnitude.

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 35

The major finding from these experiments is that the use of the GA to
select advantageous initial weights for the BP algorithm is effective. Section
3.4 outlined our current intuition that further progress with hybrid GA and
gradient search procedures will require more sophisticated developmental
programs, with the GA specifying broad constraints on patterns of neural
connectivity rather than values for any one connection. But it is not that
far-fetched to imagine that, at least in some primitive organisms’ nervous
systems, the genome does specify a coarse pattern of synaptic connections
that is then fine-tuned during the organism’s lifetime.

6 Computational complexity in GA /BP hybrids

On first blush, the idea of taking a compute-intensive procedure like BP
and duplicating it O(100) times to form a population, and then using the
GA to produce O(100) such generations seems profligate. And if we are well
satisfied with the results of a single BP run, this analysis may be correct. But
we have three good reasons to question this analysis. First, BP performance
is known to be highly variable under stochastic variation. Consequently,
many investigators already use some sort of “outer loop” of multiple, random
restarts to improve their confidence in the solutions found. Section 5 argued
that the GA’s sampling is far superior to such random restarts. Second,
there is currently great interest in more elaborate network topologies than
the standard single, fully connected hidden layer. However, extending BP
and other learning techniques to these new topologies has proven difficult.
The recent experiments reported in Section 3.3, particularly those of Todd
et al. and Harp et al., are indications, albeit preliminary ones, that the GA
can be a useful tool for exploring these novel architectures.

Finally, most of the experiments reported here have changed the BP
algorithm so that its training time is greatly reduced. As algorithm design-
ers, our primary concern must be with the total time taken by the hybrid
system. The time complexity of this system is simply the product of the
number of generations the GA is run, times the size of the population of
each generation times the training time taken by each individual:

TotalTime = Generations x PopulationSize x TrainingTime

Thus there is a direct tradeoff between the number of generations and the
number of trials allocated each individual. Using the GA to produce 100

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 36

generations of 50 individuals multiplies the apparatent time complexity by
5000. But Section 5.2 and Section 5.3 report on experiments in which the
training time was reduced (from 4000 epochs on 6-6-1 symmetry) by factors
of 20 and 100, resp. to the same error criterion. Thus the use of faster
learning rates and judicious sampling of W(0) , the 5000- fold increase
in time can be cut to a factor of 50. When the greater assurance in the
answers found through the GA’s robust, global searching is considered, and
compared to the O(10) random restarts often done with BP simulations, our
hybrid methods are very competitive.

Much of our current research focuses on a more theoretic basis for the hy-
bridization of GA and gradient techniques. The time complexity issues just
mentioned introduce an important new parameter for hybrid connection-
ist/GA systems like these, viz., how long each connectionist minimization
procedure should be allowed to iterate before the value it has found is used
to determine that network’s fitness. So, are we better off using many GA
generations of short-lived individuals, or allowing each individual to search
for longer, so as to produce a perhaps more informative value for the GA?16

One view of the space-complexity issues in hybridization is suggested
by Figure 18. Section 3.3 mentioned a few of the alternative encodings
of connectionist networks onto the GA’s string that are available. These
alternatives can be ordered in terms of the number of free parameters be-
ing searched by the GA and gradient procedures. At one extreme we can
use only the GA, fully representing in full precision each of the network’s
weights and leaving BP nothing to do; at the other extreme, BP could be
used exclusively. Intermediate between these are hybrids that encode some
constraints on the structure of the BP network into the GA’s chromosome: a
bit specifying a link’s presence, several bits specifying allowed weight ranges,
etc. When a developmental component is interposed between the GA and
BP, complexity issues become even more complicated.

It will take time to understand these tradeoffs completely. As mentioned
in Section 3.3, some measure of a network’s complexity must augment the
basic performance measure (e.g., MSE), or the GA cannot impose adaptive
pressure towards more parsimonious solutions. Rumelhart (personal com-
munication) has attempted to use BP itself to explore new architectures,
by including additional terms in the criterion function for number of hidden

'$In other words, whether ’tis nobler to “live fast and die young” or “live long and
prosper”?

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 37

A Cumulative
(Space)
Complexity

/

Length
GA stpifig

T~

| —
Gradient Binary link Ternary link GA
search only encoding encoding search only

Figure 18: Cumulative Complexity

www.manharaa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 38

units, number of links, and even number of “distinct” weights used. Ris-
sanen’s “minimum description length” formalism provides a rigorous mea-
sure of a model’s complexity [Rissanen, 1989], and Tenorio and Lee have
made an initial attempt to apply this to connectionist network architectures
[Tenorio and Lee, 1989]. Characterizing the description length of (binary)
GA genomes promises to be more straight-forward, and the stage is then
set for measuring the cumulative complexity of GA+network solutions in
the manner originally suggested by Figure 18. But the time-complexity
trade-offs mentioned above must also be incorporated, and interposing de-
velopmental programs is even more problematic. This is the core of our
future theoretic work.

In the the interim, there is another aspect of our hybrid’s computational
character that we have already begun to exploit: GA/connectionist hybrids
are eminently parallelizable.

6.1 Exploiting the parallelism of the GA

The availability of massively parallel computers, let alone large distributed
networks of loosely coupled computers, has increased dramatically. Unfortu-
nately, our ability to effectively utilize the vast computational power offered
by these parallel systems has not kept pace. Mizell (personal communi-
cation) has singled out Monte Carlo-like computations as an example of
“embarassingly parallelizable” applications (i.e., so naturally parallel that
you get no credit for saying so) that have real utility and do tap the com-
putational power of parallel machines and networks.

The basic “population” model underlying the GA (i.e., each individual
in the population independently evaluating the objective function) makes it
another candidate for parallelization, embarrased or not. We have exploited
this feature of our hybrids in an extension of Grefenstette’s GENESIS simu-
lator developed by our group. The basic architecture of this Distributed GA
(DGA) design is shown in Figure 19; Grefenstette has called this a “syn-
cronized master-slave” architecture for the GA [Grefenstette, 1981]. Assume
that some number H of hosts are connected via a local area network.'”™ A
Host Table with the name and network addresses of these hosts is con-
structed, a BP Server program is initialized on each. Then, a GA Client

7For our simulations, this environment has been a mixture of Sun 3’s and 4’s and
various Vaxen, connected via Ethernet using TCP/IP protocol and NFS.

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 39

FEthernet

%/WWWWMW

GA £y (M(O)ﬂ?aaa--- BP

Client < 10 Servers |___|

¥ —

Figure 19: Distributed GA Model

program, which is very similar to the standard Genesis package, is begun on
one host. This program creates an initial population with each individual
corresponding to a particular parameterization of a BP simulation. These
may be varied along a number of dimensions'®, although any one of our
experiments has typically explored only one or two of these parameters.

In order to coordinate distribution of BP evaluations to the available
servers, a Population Table is maintained, showing the status (Evaluated,
Being-Evaluated, or To-Be-Evaluated) of each individual. Initially, a BP
parameter packet is “dealt out” to each of the available BP servers. Typi-
cally, the population size exceeds the number of BP servers, so as evaluations
are completed the Population Table is updated and the idle server is sent
a new parameter packet to evaluate. This process repeats until the entire
population has been dealt out at least once. After (an adaptively tuned)
Timeout Period, any individuals still in the Being-Evaluated status are
dealt out again, until all evaluations have been performed. The next gener-
ation’s evaluations then commence.

This scheme works particularly well with a heterogeneous mix of com-
puters of different processing speeds and user loads because the packets sent
to and from the GA server are then randomized, avoiding bottlenecks; a
slight amount of randomized delay has been incorporated for similar effect
in a homogeneous environment. More recently, the Host Table has been
augmented with statistics about how long it is taking each host to perform
its BP evaluation. This information is used to dynamically alter the prior-

¥ Our simulator allows variation of: Number of hidden units, network wiring, , o val-
ues, initial W (0) weights, squashing functions, training regimes (random, sequential,
permuted, batch), and training time.

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 40

MSE

ERR

Trids

Figure 20: Learning curves

ity with which BP packets are assigned to the various hosts, for example
avoiding heavily loaded or completely dead hosts.

The time-complexity issues mentioned above become very significant in
the DGA design. For example, one undesirable bottleneck is created by the
end of each generation, when all but the last one or two individuals have
been evaluated and the rest of the processors must wait; Grefenstette calls
this a “semi-syncronized master-slave” architecture [Grefenstette, 1981]. In
general, with populations of reasonable size it is unlikely that these last few
evaluations are critical, and so it seems reasonable to relax the constraint
of a rigidly synchronized generational structure. Similarly, we note that
populations of BP learning curves typically look something like those por-
trayed in Figure 20, with some simulations terminating because they have
achieved the error criterion Err*, and others terminating at a maximum
number of training trials 7.!? Ideally, it should be possible for the GA to
advantageously manipulate both Frr* and 7, for example giving individu-
als who reach the error criteria quickly a high fitness value, or interupting
slow evaluations if the rest of the population is done and has found good

19We are grateful to Peter Todd for suggesting this view.

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 41

values. The interupted processor is then freed to begin work on a poten-
tially more informative evaluation. Finding an appropriate balance between
the exploitation of quickly derived solutions versus the exploration of more
time-consuming ones is a matter requiring further investigation.

7 Conclusion

This paper has reported on a series of experiments combining two popular
classes of adaptive algorithms, Genetic Algorithms and connectionist net-
works. A survey of a wide range of potential mappings of connectionist
networks onto the GA genome has convinced us that the most desirable
representations for the GA can be expected to be quite removed from the
most obvious network representations (Section 3). Our own work is pursu-
ing biologically plausible ontogenic models that create virtual independence
between the space of genomes being searched by the GA and the weight
space of the connectionist networks (Section 3.4). We have demonstrated
that the GA can be successfully used to tune parameters for the back prop-
agation algorithm, at least for the problems we have investigated (Section
4). A much more substantial class of hybrids uses the GA to globally sample
the space of initial network weights — W(0) — from which connectionist
gradient descent procedures can locally search (Section 5). These initial ex-
periments have allowed us to focus several basic theoretic questions arising
when GA and connectionist techniques are combined (Section 6), and to
develop a distributed version of the GA that exploits the “embarrasingly”
parellel nature of GA /connectionist hybrids.

Throughout, our experiments and discussion have remained in the province
of computer science, concerned with issues of algorithmic design rather than
the natural (genetic, neural, ontogenic) origin of these algorithms. We close
with two observations about the computation being performed by these nat-
ural systems.

The first observation concerns a fundamental incongruity between the
teleologies of biological systems and the artificial ones we run on computers.
Much of Section 6 was concerned with refuting objections that wrapping
the GA around BP was a waste of (computational) cycles. In our artifi-
cial algorithms it is appropriate to worry that a cycle used (for example)
to produce a new generation might be better spent allowing an indivudal

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 42

another training epoch. That is, the total number of cycles is considered a
conserved quantity. But it is not at all clear that biological populations are
burdened by any such constraint. In fact, Evolution seems truly profligate
with its “cycles,” creating as many redundantly exploring individuals as an
environment’s “carrying capacity” will allow, and allowing each to live as
long as mortality allows. As massively parallel computers become available,
using a similarly profligate strategy of redundant search may become more
sensible in algorithmic design as well (e.g., Hillis’ search for efficient sort
routines [Hillis, 1990]).

2

Second, a computational view provides new insight into the exploitation
of individuals’ learning and the evolution of a species. Despite the intuitive
appeal of a theory that would allow individual learning to favorably influence
evolution, the biology of genetic reproduction explicitly rules out the direct,
“Lamarckian” inheritance of acquired (e.g., learned) characteristics. Previ-
ous work has demonstrated that at least some of the desirable interactions
between learning and evolution can be explained via indirect mechanisms,
such as the “Baldwin Effect” [Belew, 1990].

Experiments reported here suggest another computational reason why
direct Lamarckian inheritance cannot be possible. In particular, Section
5 discussed the complex relationship between the space of initial weights
(W(0)) searched by the GA and the space of ultimate weights discovered
by the gradient techniques of conjugate gradient or BP. But if W(0) is a
proper, small subset of the ultimate weight space (as it was in the experi-
ments of Section 5.2), the solutions found by BP cannot simply be “reverse
transcribed” back into the GA’s genomic representation! More generally,
as the relation between network architecture and genomic specification be-
comes more and more indirect (for example through the use of the develop-
mental translation programs we advocate) the ability to invert this relation
diminishes. That is, given a mature, successful individual, it becomes harder
and harder to invert the mature cognitive representation responsible for the
successful performance into his or her original genetic representation.

We conjecture further that it is in fact impossible for a system to inherit
(at least some) acquired and critical characteristics, not because of biological
“implementation details” with reverse transcription (for we know evolution
to be terribly inventive), but because it is computationally impossible to
encode in the structural genotype the results of behavioral experiments. It is
our goal to use our increasing understanding of the computational properties

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 43

of biologically plausible algorithms like the GA and connectionist networks
to cast this conjecture formally. In any case, it appears that features of
information processing by natural systems and characteristics of artificial
computation are again intimately entwined.

Acknowledgements

We gratefully acknowledge useful discussions of this work with Peter Todd
and Jeffrey Miller. Thanks also to George Wittenberg and Susan Gruber
for comments on an earlier draft of this manuscript. Finally we thank the
Cognitive Computer Science Research Group of the CSE department at
UCSD for generally fomenting this and much other work.

www.manharaa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 44

References

[Ackley, 1987] Ackley, D. H. (1987). A connectionist machine for genetic
hillelimbing. Kluwer, Boston.

[Barnard and Cole, 1989] Barnard, E. and Cole, R. A. (1989). A neural-net
training program based on conjugate-gradient optimization. Technical

report, Dept. Computer Science and Engr., Oregon Grad. Ctr., Beaverton,
OR.

[Belew, 1990] Belew, R. K. (1990). Evolution, learning and culture: com-
putational metaphors for adaptive search. Complex Systems, 4(1).

[Bethke, 1981] Bethke, A. (1981). Genetic algorithms as function optimiz-
ers. Technical report, Logic of Computers Group, CCS Dept., University
of Michigan, Ann Arbor, ML

[Brady, 1985] Brady, R. M. (1985). Optimization strategies gleaned from
nature. Nature, 317:804-806.

[Caruana and Schaffer, 1988] Caruana, R. and Schaffer, J. D. (1988). Rep-
resentation and hidden bias: Gray vs. binary coding for genetic algo-
rithms. In Proc. Fifth Intl. Conf. on Machine Learning. Morgan Kauf-

mann.

[Cowan and Friedman, 1990] Cowan, J. D. and Friedman, A. E. (1990). De-
velopment and regeneration of eye-brain maps: A computational model.
In Advances in Neural Info. Proc. Systems 2. Morgan Kaufmann.

[DeJong, 1980] DelJong, K. (1980). Adaptive system design: A genetic ap-
proach. IFEFE Transactions on Systems, Man, and Cybernetics.

[Edelman, 1987] Edelman, G. (1987). Neural Darwinism: The theory of
neuronal group selection. Basic Books, New York.

[Fogel et al., 1966] Fogel, L., Owens, A., and Walsh, M. (1966). Artificial

intelligence through simulated evolution. Wiley, New York.

[Goldberg, 1989] Goldberg, D. (1989). Genetic algorithms in search, opti-
mization, and machine learning. Addison-Wesley, Reading, MA.

[Grefenstette, 1985] Grefenstette, J., editor (1985). Proc. First Intl. Conf.
on Genetic Algorithms and their applications.

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 45

[Grefenstette, 1987] Grefenstette, J., editor (1987). Proc. 2nd Intl. Conf.
on Genetic Algorithms. Lawrence Erlbaum.

[Grefenstette, 1981] Grefenstette, J. J. (1981). Parallel adaptive algorithms
for function optimization. Technical Report CS-81-19, Computer Science
Dept., Vanderbilt Univ., Nashville, TN.

[Hanson and Burr, 1990] Hanson, S. and Burr, D. (1990). What connec-
tionist models learn: Learning and representation in connectionist net-
works. Behavioral and Brain Sciences.

[Harp et al., 1989] Harp, S., Samad, T., and Guha, A. (1989). Towards
the genetic synthesis of neural networks. In Proc. Third Intl. Conf. on
Genetic Algorithms, San Mateo, CA. Morgan Kaufmann.

[Hillis, 1990] Hillis, W. D. (1990). Co-evolving parasites improve simulated
evolution as an optimization procedure. In Proc. Conf. on Fmergent
Computation. MIT Press.

[Holland, 1975] Holland, J. (1975). Adaptation in natural and artificial sys-
tems. University of Michigan Press, Ann Arbor, MI.

[Huynen and Hogweg, 1989] Huynen, M. A. and Hogweg, P. (1989). Ge-
netic algorithms and information accumulation during the evolution of
gene regulation. In Schaffer, J. D., editor, Proc. Third Intl. Conf. on
Genetic Algorithms, Washington, D.C. Morgan Kaufman.

[Kauffman and Smith, 1986] Kauffman, S. and Smith, R. G. (1986). Adap-

tive automata based on Darwinian selection. Physica D, 22.

[Kolen and Pollack, 1990] Kolen, J. F. and Pollack, J. B. (1990). Back prop-
agation is sensitive to initial conditions. Technical Report 90-JK-BPSIC,
CIS Dept., Ohio St. Univ., Columbus, OH.

[Merrill and Port, 1988] Merrill, J. W. L. and Port, R. F. (1988). A stochas-
tic learning algorithm for neural networks. Technical Report 236, Dept.
Linguistics and Computer Science, Indiana Univ., Bloomington, IN.

[Miller et al., 1989] Miller, G., Todd, P., and Hegde, S. (1989). Designing
neural networks using genetic algorithms. In Proc. Third Intl. Conf. on
Genetic Algorithms, San Mateo, CA. Morgan Kaufmann.

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 46

[Minsky and Papert, 1988] Minsky, M. and Papert, S. (1988). Perceptrons
(exzpanded edition). MIT Press, Cambridge, MA.

[Miyata, 1987] Miyata, Y. (1987). Sunnet version 5.2. Technical Report
8708, Inst. for Cognitive Science, UCSD, La Jolla, CA.

[Montana and Davis, 1989] Montana, D. J. and Davis, L. (1989). Training
feedforward networks using genetic algorithms. In Proc. IJCAI Morgan
Kaufman.

[Offutt, 1989] Offutt, D. (1989). A reinforcement learning algorithm for
training fully and bidirectionally-interconnected connectionist networks.

(draft).

[Purves, 1988] Purves, D. (1988). Body and brain: A trophic theory of neu-
ral connections. Harvard Univ. Press, Cambridge, MA.

[Rissanen, 1989] Rissanen, J. (1989). Stochastic complexity in statistical in-
quiry. Technical Report RJ-6901, IBM Research Div., Yorktown Heights,
NY.

[Rizki and Conrad, 1986] Rizki, M. and Conrad, M. (1986). Computing the
theory of evolution. Physica D, 42:83-99.

[Rumelhart et al., 1986] Rumelhart, D., Hinton, G., and Williams, R.
(1986). Learning internal representations by error propagation. In Mc-
Clelland, J. and Rumelhart, D., editors, Parallel distributed process-
ing: Fxplorations in the microstructure of cognition, chapter 8. Bradford

Books, Cambridge, MA.
[Schaffer and Morishima, 1985] Schaffer, J. and Morishima, A. (1985). An

adaptive crossover distribution mechanism for genetic algorithms. In
Grefenstette, J., editor, Proc. Intl. Conf. on genetic algorithms and their
applications.

[Schaffer, 1989] Schaffer, J. D., editor (1989). Proc. Third Intl. Conf. on
Genetic Algorithms, Washington, D.C. Morgan Kaufman.

[Schraudolph and Belew, 1990] Schraudolph, N. N. and Belew, R. K.
(1990). Dynamic parameter encoding for Genetic Algorithms. Techni-
cal Report LAUR 90-2795, Los Alamos National Laboratory - Ctr. for
Nonlinear Studies, Los Alamos, NM.

www.manaraa.com

Belew, Meclnerney & Schraudolf: Evolving Networks 47

[Stork et al., 1990] Stork, D. G., Walker, S., Burns, M., and Jackson, B.
(1990). Preadaptation in neural circuits. In Proc. ILJCNN (Vol. 1), New
York. IEEE.

[Tenorio and Lee, 1989] Tenorio, M. F. and Lee, W. (1989). Self-organizing
neural network for optimized supervised learning. Technical report,
School of Electrical Engr., Purdue Univ., W. Lafayette, IN.

[Todd, 1988] Todd, P. (1988). Evolutionary methods for connectionist ar-
chitectures.

[Whitley and Hanson, 1989] Whitley, D. and Hanson, T. (1989). Optimiz-
ing neural networks using faster, more accurate genetic search. In Schaf-
fer, J. D., editor, Proc. Third Intl. Conf. on Genetic Algorithms, Wash-
ington, D.C. Morgan Kaufman.

www.manharaa.com

